Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (10391) Expression Attributions Wiki
XB-ANAT-111

Papers associated with embryo (and h2az1)

Limit to papers also referencing gene:
Show all embryo papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The H2A.Z and NuRD associated protein HMG20A controls early head and heart developmental transcription programs., Herchenröther A., Nat Commun. January 28, 2023; 14 (1): 472.                                                    


Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome., Greenberg RS., Cell. September 5, 2019; 178 (6): 1421-1436.e24.                                


Xenopus SOX5 enhances myogenic transcription indirectly through transrepression., Della Gaspera B., Dev Biol. October 15, 2018; 442 (2): 262-275.                    


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


Optimal histone H3 to linker histone H1 chromatin ratio is vital for mesodermal competence in Xenopus., Lim CY., Development. February 1, 2013; 140 (4): 853-60.                                              


Identification of neural genes using Xenopus DNA microarrays., Shin Y., Dev Dyn. February 1, 2005; 232 (2): 432-44.            


Unique residues on the H2A.Z containing nucleosome surface are important for Xenopus laevis development., Ridgway P., J Biol Chem. October 15, 2004; 279 (42): 43815-20.          


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


H2A.ZI, a new variant histone expressed during Xenopus early development exhibits several distinct features from the core histone H2A., Iouzalen N., Nucleic Acids Res. October 15, 1996; 24 (20): 3947-52.        

???pagination.result.page??? 1