Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3035) Expression Attributions Wiki
XB-ANAT-12

Papers associated with forebrain (and trh)

Limit to papers also referencing gene:
Show all forebrain papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Thyroid Disrupting Chemicals in Mixture Perturb Thymocyte Differentiation in Xenopus laevis Tadpoles., McGuire CC., Toxicol Sci. May 27, 2021; 181 (2): 262-272.


Characterization of a novel thyrotropin-releasing hormone receptor, TRHR3, in chickens., Li X., Poult Sci. March 1, 2020; 99 (3): 1643-1654.              


Understanding How the Subcommissural Organ and Other Periventricular Secretory Structures Contribute via the Cerebrospinal Fluid to Neurogenesis., Guerra MM., Front Cell Neurosci. September 23, 2015; 9 480.                


Analysis of the melanotrope cell neuroendocrine interface in two amphibian species, Rana ridibunda and Xenopus laevis: a celebration of 35 years of collaborative research., Jenks BG., Gen Comp Endocrinol. January 1, 2011; 170 (1): 57-67.


Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis., van Wijk DC., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.        


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis., Roubos EW., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.                  


Thyrotropin-releasing hormone (TRH) in the cerebellum., Shibusawa N., Cerebellum. January 1, 2008; 7 (1): 84-95.


Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis., Jenks BG., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.


Molecular cloning and functional characterization of a prolactin-releasing peptide homolog from Xenopus laevis., Sakamoto T., Peptides. December 1, 2006; 27 (12): 3347-51.


In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis., Galas L., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.


Low temperature stimulates alpha-melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis., Tonosaki Y., J Neuroendocrinol. November 1, 2004; 16 (11): 894-905.


Distribution of the mRNAs encoding the thyrotropin-releasing hormone (TRH) precursor and three TRH receptors in the brain and pituitary of Xenopus laevis: effect of background color adaptation on TRH and TRH receptor gene expression., Bidaud I., J Comp Neurol. September 6, 2004; 477 (1): 11-28.                      


TRH signal transduction in melanotrope cells of Xenopus laevis., Lieste JR., Gen Comp Endocrinol. June 1, 2002; 127 (1): 80-8.


[Cardiotoxicity of lindane, a gamma isomer of hexachlorocyclohexane]., Sauviat MP., J Soc Biol. January 1, 2002; 196 (4): 339-48.


Cloning of two thyrotropin-releasing hormone receptor subtypes from a lower vertebrate (Catostomus commersoni): functional expression, gene structure, and evolution., Harder S., Gen Comp Endocrinol. November 1, 2001; 124 (2): 236-45.


Constitutive signaling by Kaposi's sarcoma-associated herpesvirus G-protein-coupled receptor desensitizes calcium mobilization by other receptors., Lupu-Meiri M., J Biol Chem. March 9, 2001; 276 (10): 7122-8.


Transcriptional repression of TRH promoter function by T3: analysis by in vivo gene transfer., Guissouma H., Biochem Cell Biol. January 1, 2000; 78 (3): 155-63.


Background adaptation by Xenopus laevis: a model for studying neuronal information processing in the pituitary pars intermedia., Roubos EW., Comp Biochem Physiol A Physiol. November 1, 1997; 118 (3): 533-50.


Kinetics of calcium steps underlying calcium oscillations in melanotrope cells of Xenopus laevis., Koopman WJ., Cell Calcium. September 1, 1997; 22 (3): 167-78.


Sauvagine and TRH differentially stimulate proopiomelanocortin biosynthesis in the Xenopus laevis intermediate pituitary., Dotman CH., Neuroendocrinology. August 1, 1997; 66 (2): 106-13.


Frog prohormone convertase PC2 mRNA has a mammalian-like expression pattern in the central nervous system and is colocalized with a subset of thyrotropin-releasing hormone-expressing neurons., Pu LP., J Comp Neurol. March 27, 1995; 354 (1): 71-86.


Contribution of response kinetics to the response pattern: studies of responses to thyrotropin-releasing hormone in Xenopus oocytes., Lipinsky D., J Cell Physiol. February 1, 1995; 162 (2): 284-9.


Truncation of the thyrotropin-releasing hormone receptor carboxyl tail causes constitutive activity and leads to impaired responsiveness in Xenopus oocytes and AtT20 cells., Matus-Leibovitch N., J Biol Chem. January 20, 1995; 270 (3): 1041-7.


Differential coupling of G protein alpha subunits to seven-helix receptors expressed in Xenopus oocytes., Quick MW., J Biol Chem. December 2, 1994; 269 (48): 30164-72.


The TRH neuronal phenotype forms embryonic cell clusters that go on to establish a regionalized cell fate in forebrain., Hayes WP., J Neurobiol. September 1, 1994; 25 (9): 1095-112.


Modulation of the biological activity of thyrotropin-releasing hormone by alternate processing of pro-TRH., Ladram A., Biochimie. January 1, 1994; 76 (3-4): 320-8.


Spontaneous cytosolic calcium pulsing detected in Xenopus melanotrophs: modulation by secreto-inhibitory and stimulant ligands., Shibuya I., Endocrinology. May 1, 1993; 132 (5): 2166-75.


Functional expression and molecular characterization of the thyrotrophin-releasing hormone receptor from the rat anterior pituitary gland., Sellar RE., J Mol Endocrinol. April 1, 1993; 10 (2): 199-206.


Two isoforms of the thyrotropin-releasing hormone receptor generated by alternative splicing have indistinguishable functional properties., de la Peña P., J Biol Chem. December 25, 1992; 267 (36): 25703-8.


Cloning and expression of the thyrotropin-releasing hormone receptor from GH3 rat anterior pituitary cells., de la Peña P., Biochem J. June 15, 1992; 284 ( Pt 3) 891-9.


Molecular cloning of a complementary deoxyribonucleic acid encoding the thyrotropin-releasing hormone receptor and regulation of its messenger ribonucleic acid in rat GH cells., Zhao D., Endocrinology. June 1, 1992; 130 (6): 3529-36.


Thyrotropin-releasing hormone (TRH) and phorbol myristate acetate decrease TRH receptor messenger RNA in rat pituitary GH3 cells: evidence that protein kinase-C mediates the TRH effect., Fujimoto J., Mol Endocrinol. October 1, 1991; 5 (10): 1527-32.


Thyrotropin-releasing hormone facilitates display of reproductive behavior and locomotor behavior in an amphibian., Taylor JA., Horm Behav. June 1, 1991; 25 (2): 128-36.


Expression cloning of a cDNA encoding the mouse pituitary thyrotropin-releasing hormone receptor., Straub RE., Proc Natl Acad Sci U S A. December 1, 1990; 87 (24): 9514-8.


Different-sized mRNAs from GH4C1 cells induce a TRH-dependent electrical response in Xenopus laevis oocytes., Wright MS., Acta Physiol Scand. September 1, 1990; 140 (1): 129-34.


Activation of two different receptors mobilizes calcium from distinct stores in Xenopus oocytes., Shapira H., Biophys J. June 1, 1990; 57 (6): 1281-5.


Chloride channels mediate the response to gonadotropin-releasing hormone (GnRH) in Xenopus oocytes injected with rat anterior pituitary mRNA., Yoshida S., Mol Endocrinol. December 1, 1989; 3 (12): 1953-60.


Neurons expressing thyrotropin-releasing hormone-like messenger ribonucleic acid are widely distributed in Xenopus laevis brain., Zoeller RT., Gen Comp Endocrinol. October 1, 1989; 76 (1): 139-46.      


Receptor number determines latency and amplitude of the thyrotropin-releasing hormone response in Xenopus oocytes injected with pituitary RNA., Straub RE., Mol Endocrinol. June 1, 1989; 3 (6): 907-14.


Modulation of Neuropeptide-lnduced Membrane Currents by Protein Kinase C in Xenopus Oocytes Injected with GH Pituitary Cell Poly(A) RNA., Mahlmann S., J Neuroendocrinol. February 1, 1989; 1 (1): 65-9.


Several hypothalamic peptides stimulate in vitro thyrotropin secretion by pituitaries of anuran amphibians., Denver RJ., Gen Comp Endocrinol. December 1, 1988; 72 (3): 383-93.


Functional expression of rat pituitary gonadotrophin-releasing hormone receptors in Xenopus oocytes., Eidne KA., J Mol Endocrinol. November 1, 1988; 1 (3): R9-12.


Differences in receptor-evoked membrane electrical responses in native and mRNA-injected Xenopus oocytes., Oron Y., Proc Natl Acad Sci U S A. June 1, 1988; 85 (11): 3820-4.


Decreased TRH receptor mRNA activity precedes homologous downregulation: assay in oocytes., Oron Y., Science. December 4, 1987; 238 (4832): 1406-8.


Mechanism of membrane electrical response to thyrotropin-releasing hormone in Xenopus oocytes injected with GH3 pituitary cell messenger ribonucleic acid., Oron Y., Mol Endocrinol. December 1, 1987; 1 (12): 918-25.


Coupling of inositol phospholipid hydrolysis to peptide hormone receptors expressed from adrenal and pituitary mRNA in Xenopus laevis oocytes., McIntosh RP., Proc Natl Acad Sci U S A. December 1, 1987; 84 (24): 9045-8.


Assessment of TRH as a potential MSH release stimulating factor in Xenopus laevis., Verburg-van Kemenade BM., Peptides. January 1, 1987; 8 (1): 69-76.


Processing of the thyrotropin releasing hormone (TRH) precursor in Xenopus skin and bovine hypothalamus: evidence for the existence of extended forms of TRH., Cockle SM., Regul Pept. May 1, 1986; 14 (3): 217-27.

???pagination.result.page??? 1 2 ???pagination.result.next???