Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (3035) Expression Attributions Wiki
XB-ANAT-12

Papers associated with forebrain (and gabarap)

Limit to papers also referencing gene:
Show all forebrain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits., Truszkowski TL., Neural Dev. August 8, 2016; 11 (1): 14.          


Pharmacological induction of skin pigmentation unveils the neuroendocrine circuit regulated by light., Bertolesi GE., Pigment Cell Melanoma Res. March 1, 2016; 29 (2): 186-98.


Probing α4βδ GABAA receptor heterogeneity: differential regional effects of a functionally selective α4β1δ/α4β3δ receptor agonist on tonic and phasic inhibition in rat brain., Hoestgaard-Jensen K., J Neurosci. December 3, 2014; 34 (49): 16256-72.


A cycloartane glycoside derived from Actaea racemosa L. modulates GABAA receptors and induces pronounced sedation in mice., Strommer B., J Pharmacol Exp Ther. November 1, 2014; 351 (2): 234-42.


The orthosteric GABAA receptor ligand Thio-4-PIOL displays distinctly different functional properties at synaptic and extrasynaptic receptors., Hoestgaard-Jensen K., Br J Pharmacol. October 1, 2013; 170 (4): 919-32.


Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development., Kaeser GE., Dev Dyn. April 1, 2011; 240 (4): 862-73.                                          


Fragrant dioxane derivatives identify beta1-subunit-containing GABAA receptors., Sergeeva OA., J Biol Chem. July 30, 2010; 285 (31): 23985-93.


About a snail, a toad, and rodents: animal models for adaptation research., Roubos EW., Front Endocrinol (Lausanne). January 1, 2010; 1 4.      


alpha1beta2delta, a silent GABAA receptor: recruitment by tracazolate and neurosteroids., Zheleznova N., Br J Pharmacol. March 1, 2008; 153 (5): 1062-71.


Neuronal representation of odourants in the olfactory bulb of Xenopus laevis tadpoles., Czesnik D., Eur J Neurosci. January 1, 2003; 17 (1): 113-8.                    


Modulation of recombinant GABA receptor/channel subunits by domain-specific antibodies in Xenopus oocytes., Ekema GM., J Membr Biol. October 1, 2001; 183 (3): 205-13.


Permeability and single channel conductance of human homomeric rho1 GABAC receptors., Wotring VE., J Physiol. December 1, 1999; 521 Pt 2 327-36.


Neuronally restricted RNA splicing regulates the expression of a novel GABAA receptor subunit conferring atypical functional properties [corrected; erratum to be published]., Whiting PJ., J Neurosci. July 1, 1997; 17 (13): 5027-37.


Neuroendocrine gamma-aminobutyric acid (GABA): functional differences in GABAA versus GABAB receptor inhibition of the melanotrope cell of Xenopus laevis., Buzzi M., Endocrinology. January 1, 1997; 138 (1): 203-12.


Neuroendocrine γ-Aminobutyric Acid (GABA): Functional Differences in GABAA Versus GABAB Receptor Inhibition of the Melanotrope Cell of Xenopus laevis1., Buzzi M., Endocrinology. January 1, 1997; 138 (1): 203-212.


Pharmacology of the human gamma-aminobutyric acidA receptor alpha 4 subunit expressed in Xenopus laevis oocytes., Whittemore ER., Mol Pharmacol. November 1, 1996; 50 (5): 1364-75.


Differential action of secreto-inhibitors on proopiomelanocortin biosynthesis in the intermediate pituitary of Xenopus laevis., Dotman CH., Endocrinology. November 1, 1996; 137 (11): 4551-7.


Action of stimulatory and inhibitory alpha-MSH secretagogues on spontaneous calcium oscillations in melanotrope cells of Xenopus laevis., Scheenen WJ., Pflugers Arch. June 1, 1994; 427 (3-4): 244-51.


Large amplitude variability of GABAergic IPSCs in melanotropes from Xenopus laevis: evidence that quantal size differs between synapses., Borst JG., J Neurophysiol. February 1, 1994; 71 (2): 639-55.


Dual action of GABAA receptors on the secretory process of melanotrophs of Xenopus laevis., Jenks BG., Neuroendocrinology. July 1, 1993; 58 (1): 80-5.


Spontaneous cytosolic calcium pulsing detected in Xenopus melanotrophs: modulation by secreto-inhibitory and stimulant ligands., Shibuya I., Endocrinology. May 1, 1993; 132 (5): 2166-75.


Analysis of gamma-aminobutyric acidB receptor function in the in vitro and in vivo regulation of alpha-melanotropin-stimulating hormone secretion from melanotrope cells of Xenopus laevis., De Koning HP., Endocrinology. February 1, 1993; 132 (2): 674-81.


Differential effects of coexisting dopamine, GABA and NPY on alpha-MSH secretion from melanotrope cells of Xenopus laevis., Leenders HJ., Life Sci. January 1, 1993; 52 (24): 1969-75.


Studies on pituitary melanotrophs reveal the novel GABAB antagonist CGP 35-348 to be the first such compound effective on endocrine cells., Shibuya I., Proc Biol Sci. February 22, 1991; 243 (1307): 129-37.


Functional characteristics and sites of gene expression of the alpha 1, beta 1, gamma 2-isoform of the rat GABAA receptor., Malherbe P., J Neurosci. July 1, 1990; 10 (7): 2330-7.


Functional expression and sites of gene transcription of a novel alpha subunit of the GABAA receptor in rat brain., Malherbe P., FEBS Lett. January 29, 1990; 260 (2): 261-5.


Regulation of cyclic-AMP synthesis in amphibian melanotrope cells through catecholamine and GABA receptors., Verburg-van Kemenade BM., Life Sci. May 11, 1987; 40 (19): 1859-67.


GABA and dopamine act directly on melanotropes of Xenopus to inhibit MSH secretion., Verburg-Van Kemenade BM., Brain Res Bull. November 1, 1986; 17 (5): 697-704.

???pagination.result.page??? 1