Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1738) Expression Attributions Wiki
XB-ANAT-15

Papers associated with midbrain (and th)

Limit to papers also referencing gene:
Show all midbrain papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles., Ta AC., G3 (Bethesda). January 4, 2022; 12 (1):               


Comparative analysis of monoaminergic cerebrospinal fluid-contacting cells in Osteichthyes (bony vertebrates)., Xavier AL., J Comp Neurol. June 15, 2017; 525 (9): 2265-2283.                        


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


Deep-brain photoreception links luminance detection to motor output in Xenopus frog tadpoles., Currie SP., Proc Natl Acad Sci U S A. May 24, 2016; 113 (21): 6053-8.                      


ACT-PRESTO: Rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging., Lee E., Sci Rep. January 11, 2016; 6 18631.                    


Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis., López JM., Brain Behav Evol. January 1, 2016; 88 (2): 127-146.


Dopamine: a parallel pathway for the modulation of spinal locomotor networks., Sharples SA., Front Neural Circuits. June 16, 2014; 8 55.          


Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development., Morona R., J Comp Neurol. January 1, 2013; 521 (1): 79-108.                  


Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system., López JM., J Chem Neuroanat. December 1, 2010; 40 (4): 325-38.


Sonic hedgehog expression during Xenopus laevis forebrain development., Domínguez L., Dev Biol. August 6, 2010; 1347 19-32.            


Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians., Morona R., J Comp Neurol. August 10, 2009; 515 (5): 503-37.


Spatio-temporal expression of Pax6 in Xenopus forebrain., Moreno N., Brain Res. November 6, 2008; 1239 92-9.      


Tyrosine hydroxylase-immunoreactive interneurons in the olfactory bulb of the frogs Rana pipiens and Xenopus laevis., Boyd JD., J Comp Neurol. December 2, 2002; 454 (1): 42-57.  


Basal ganglia organization in amphibians: chemoarchitecture., Marín O., J Comp Neurol. March 16, 1998; 392 (3): 285-312.                      


Development of catecholamine systems in the central nervous system of the newt Pleurodeles waltlii as revealed by tyrosine hydroxylase immunohistochemistry., González A., J Comp Neurol. September 11, 1995; 360 (1): 33-48.


Ontogeny of catecholamine systems in the central nervous system of anuran amphibians: an immunohistochemical study with antibodies against tyrosine hydroxylase and dopamine., González A., J Comp Neurol. August 1, 1994; 346 (1): 63-79.


Effects of localized application of retinoic acid on Xenopus laevis development., Drysdale TA., Dev Biol. April 1, 1994; 162 (2): 394-401.            


Distribution of tyrosine hydroxylase and dopamine immunoreactivities in the brain of the South African clawed frog Xenopus laevis., González A., Anat Embryol (Berl). February 1, 1993; 187 (2): 193-201.


Does lineage determine the dopamine phenotype in the tadpole hypothalamus?: A quantitative analysis., Huang S., J Neurosci. April 1, 1992; 12 (4): 1351-62.                

???pagination.result.page??? 1