Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (40) Expression Attributions Wiki
XB-ANAT-1592

Papers associated with bipolar neuron

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Endocannabinoid signaling enhances visual responses through modulation of intracellular chloride levels in retinal ganglion cells., Miraucourt LS., Elife. August 8, 2016; 5                     


Islet-1 immunoreactivity in the developing retina of Xenopus laevis., Álvarez-Hernán G., ScientificWorldJournal. November 11, 2013; 2013 740420.              


The distribution of Dishevelled in convergently extending mesoderm., Panousopoulou E., Dev Biol. October 15, 2013; 382 (2): 496-503.            


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W., PLoS One. July 1, 2013; 8 (7): e69372.              


Melatonin receptors are anatomically organized to modulate transmission specifically to cone pathways in the retina of Xenopus laevis., Wiechmann AF., J Comp Neurol. April 15, 2012; 520 (6): 1115-27.                  


Cell-autonomous alterations in dendritic arbor morphology and connectivity induced by overexpression of MeCP2 in Xenopus central neurons in vivo., Marshak S., PLoS One. January 1, 2012; 7 (3): e33153.                    


Chemokine ligand Xenopus CXCLC (XCXCLC) regulates cell movements during early morphogenesis., Goto T., Dev Growth Differ. December 1, 2011; 53 (9): 971-81.            


Allosteric modulation of retinal GABA receptors by ascorbic acid., Calero CI., J Neurosci. June 29, 2011; 31 (26): 9672-82.


The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis., Perry KJ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.                


MicroRNAs couple cell fate and developmental timing in retina., Decembrini S., Proc Natl Acad Sci U S A. December 15, 2009; 106 (50): 21179-84.          


Long-range retrograde spread of LTP and LTD from optic tectum to retina., Du JL., Proc Natl Acad Sci U S A. November 10, 2009; 106 (45): 18890-6.


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


Hemichannel-mediated and pH-based feedback from horizontal cells to cones in the vertebrate retina., Fahrenfort I., PLoS One. June 30, 2009; 4 (6): e6090.                        


The role of Xenopus Rx-L in photoreceptor cell determination., Wu HY., Dev Biol. March 15, 2009; 327 (2): 352-65.            


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.              


A specific box switches the cell fate determining activity of XOTX2 and XOTX5b in the Xenopus retina., Onorati M., Neural Dev. June 27, 2007; 2 12.            


Ptf1a triggers GABAergic neuronal cell fates in the retina., Dullin JP., BMC Dev Biol. May 31, 2007; 7 110.              


Regulation of Xenopus gastrulation by ErbB signaling., Nie S., Dev Biol. March 1, 2007; 303 (1): 93-107.                    


Timing the generation of distinct retinal cells by homeobox proteins., Decembrini S., PLoS Biol. September 1, 2006; 4 (9): e272.                          


Neuronal leucine-rich repeat 6 (XlNLRR-6) is required for late lens and retina development in Xenopus laevis., Wolfe AD., Dev Dyn. April 1, 2006; 235 (4): 1027-41.          


A retinal-specific regulator of G-protein signaling interacts with Galpha(o) and accelerates an expressed metabotropic glutamate receptor 6 cascade., Dhingra A., J Neurosci. June 23, 2004; 24 (25): 5684-93.


Integrin-ECM interactions regulate cadherin-dependent cell adhesion and are required for convergent extension in Xenopus., Marsden M., Curr Biol. July 15, 2003; 13 (14): 1182-91.                  


XOtx5b and XOtx2 regulate photoreceptor and bipolar fates in the Xenopus retina., Viczian AS., Development. April 1, 2003; 130 (7): 1281-94.                    


Topographic mapping in dorsoventral axis of the Xenopus retinotectal system depends on signaling through ephrin-B ligands., Mann F., Neuron. August 1, 2002; 35 (3): 461-73.  


p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations., Dyer MA., J Neurosci. June 15, 2001; 21 (12): 4259-71.


Vesicle-associated membrane protein isoforms in the tiger salamander retina., Sherry DM., J Comp Neurol. March 19, 2001; 431 (4): 424-36.


Structure and function of photoreceptor and second-order cell mosaics in the retina of Xenopus., Gábriel R., Int Rev Cytol. January 1, 2001; 210 77-120.


Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis., Brown NL., Development. December 1, 1998; 125 (23): 4821-33.    


The number and distribution of bipolar to ganglion cell synapses in the inner plexiform layer of the anuran retina., Buzás P., Vis Neurosci. January 1, 1996; 13 (6): 1099-107.


Serotonergic and serotonin-synthesizing cells of the Xenopus retina., Schütte M., Int J Neurosci. September 1, 1994; 78 (1-2): 67-73.


A novel GABA receptor on bipolar cell terminals in the tiger salamander retina., Lukasiewicz PD., J Neurosci. March 1, 1994; 14 (3 Pt 1): 1202-12.


Synaptic contacts of serotonin-like immunoreactive and 5,7-dihydroxytryptamine-accumulating neurons in the anuran retina., Gábriel R., Neuroscience. June 1, 1993; 54 (4): 1103-14.


Serotonin synthesis and accumulation by neurons of the anuran retina., Zhu B., Vis Neurosci. January 1, 1992; 9 (3-4): 377-88.


Physiological and morphological properties of off- and on-center bipolar cells in the Xenopus retina: effects of glycine and GABA., Stone S., Vis Neurosci. October 1, 1991; 7 (4): 363-76.


Serotonin-like immunoreactivity in the retina of the clawed frog Xenopus laevis., Schütte M., J Neurocytol. August 1, 1990; 19 (4): 504-18.


Somatostatin-like immunoreactivity and glycine high-affinity uptake colocalize to an interplexiform cell of the Xenopus laevis retina., Smiley JF., J Comp Neurol. August 22, 1988; 274 (4): 608-18.


Rod and cone inputs to bipolar and horizontal cells of the Xenopus retina., Witkovsky P., Vision Res. January 1, 1983; 23 (11): 1251-8.


A freeze-fracture study of synaptogenesis in the distal retina of larval Xenopus., Nagy AR., J Neurocytol. December 1, 1981; 10 (6): 897-919.


Synapse formation and modification between distal retinal neurons in larval and juvenile Xenopus., Witkovsky P., Proc R Soc Lond B Biol Sci. March 11, 1981; 211 (1184): 373-89.


The formation of photoreceptor synapses in the retina of larval Xenopus., Chen F., J Neurocytol. December 1, 1978; 7 (6): 721-40.

???pagination.result.page??? 1