Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4274) Expression Attributions Wiki
XB-ANAT-170

Papers associated with muscle (and myh1)

Limit to papers also referencing gene:
Show all muscle papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Disabled-2: a positive regulator of the early differentiation of myoblasts., Shang N., Cell Tissue Res. September 1, 2020; 381 (3): 493-508.                              


The Xenopus animal cap transcriptome: building a mucociliary epithelium., Angerilli A., Nucleic Acids Res. September 28, 2018; 46 (17): 8772-8787.                          


Apoptosis and differentiation of Xenopus tail-derived myoblasts by thyroid hormone., Tamura K., J Mol Endocrinol. June 1, 2015; 54 (3): 185-92.


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.                                            


The alternative splicing regulator Tra2b is required for somitogenesis and regulates splicing of an inhibitory Wnt11b isoform., Dichmann DS., Cell Rep. February 3, 2015; 10 (4): 527-36.                    


Transcriptional regulators in the Hippo signaling pathway control organ growth in Xenopus tadpole tail regeneration., Hayashi S., Dev Biol. December 1, 2014; 396 (1): 31-41.                      


In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency., Gentsch GE., Cell Rep. September 26, 2013; 4 (6): 1185-96.                              


Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene., Nicetto D., PLoS Genet. January 1, 2013; 9 (1): e1003188.                                                                


Inhibition of heart formation by lithium is an indirect result of the disruption of tissue organization within the embryo., Martin LK., Dev Growth Differ. February 1, 2012; 54 (2): 153-66.                


Cardiac neural crest is dispensable for outflow tract septation in Xenopus., Lee YH., Development. May 1, 2011; 138 (10): 2025-34.                  


Reduced levels of survival motor neuron protein leads to aberrant motoneuron growth in a Xenopus model of muscular atrophy., Ymlahi-Ouazzani Q., Neurogenetics. February 1, 2010; 11 (1): 27-40.  


Transgenic Xenopus with prx1 limb enhancer reveals crucial contribution of MEK/ERK and PI3K/AKT pathways in blastema formation during limb regeneration., Suzuki M., Dev Biol. April 15, 2007; 304 (2): 675-86.              


Changing a limb muscle growth program into a resorption program., Cai L., Dev Biol. April 1, 2007; 304 (1): 260-71.                      


TBX5 is required for embryonic cardiac cell cycle progression., Goetz SC., Development. July 1, 2006; 133 (13): 2575-84.                


Spatiotemporal characterization of short versus long duration calcium transients in embryonic muscle and their role in myofibrillogenesis., Campbell NR., Dev Biol. April 1, 2006; 292 (1): 253-64.    


Characteristics of initiation and early events for muscle development in the Xenopus limb bud., Satoh A., Dev Dyn. December 1, 2005; 234 (4): 846-57.            


Muscle formation in regenerating Xenopus froglet limb., Satoh A., Dev Dyn. June 1, 2005; 233 (2): 337-46.        


Cardiac neural crest ablation alters Id2 gene expression in the developing heart., Martinsen BJ., Dev Biol. August 1, 2004; 272 (1): 176-90.          


Xenopus bagpipe-related gene, koza, may play a role in regulation of cell proliferation., Newman CS., Dev Dyn. December 1, 2002; 225 (4): 571-80.    


FGF-10 stimulates limb regeneration ability in Xenopus laevis., Yokoyama H., Dev Biol. May 1, 2001; 233 (1): 72-9.      


A calcium signaling cascade essential for myosin thick filament assembly in Xenopus myocytes., Ferrari MB., J Cell Biol. June 15, 1998; 141 (6): 1349-56.            


Spatial expression of two tadpole stage specific myosin heavy chains in Xenopus laevis., Radice GP., Acta Anat (Basel). January 1, 1995; 153 (4): 254-62.


Single-cell transplantation determines the time when Xenopus muscle precursor cells acquire a capacity for autonomous differentiation., Kato K., Proc Natl Acad Sci U S A. February 15, 1993; 90 (4): 1310-4.


Expression of myosin heavy chain transcripts during Xenopus laevis development., Radice GP., Dev Biol. June 1, 1989; 133 (2): 562-8.

???pagination.result.page??? 1