Results 1 - 11 of 11 results
RAPGEF5 Regulates Nuclear Translocation of β-Catenin. , Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.
The Nedd4-binding protein 3 ( N4BP3) is crucial for axonal and dendritic branching in developing neurons. , Schmeisser MJ., Neural Dev. September 17, 2013; 8 18.
Origin and segregation of cranial placodes in Xenopus laevis. , Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.
EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis. , Li Y., Biol Cell. February 17, 2010; 102 (5): 277-92.
Myosin-X is required for cranial neural crest cell migration in Xenopus laevis. , Hwang YS., Dev Dyn. October 1, 2009; 238 (10): 2522-9.
Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. , Schlosser G ., Dev Biol. August 1, 2008; 320 (1): 199-214.
GDNF expression during Xenopus development. , Kyuno J ., Gene Expr Patterns. January 1, 2007; 7 (3): 313-7.
Olfactory and lens placode formation is controlled by the hedgehog-interacting protein ( Xhip) in Xenopus. , Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.
Molecular anatomy of placode development in Xenopus laevis. , Schlosser G ., Dev Biol. July 15, 2004; 271 (2): 439-66.
Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors. , David R ., Mech Dev. May 1, 2001; 103 (1-2): 189-92.
Loss of ectodermal competence for lateral line placode formation in the direct developing frog Eleutherodactylus coqui. , Schlosser G ., Dev Biol. September 15, 1999; 213 (2): 354-69.