Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (12667) Expression Attributions Wiki
XB-ANAT-175

Papers associated with nervous system (and grin1)

Limit to papers also referencing gene:
Show all nervous system papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery., O'Connor EC., Expert Opin Drug Discov. February 1, 2024; 19 (2): 173-187.      


Recurrent seizure-related GRIN1 variant: Molecular mechanism and targeted therapy., Xu Y., Ann Clin Transl Neurol. July 1, 2021; 8 (7): 1480-1494.            


Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders., Tang W., Neuropharmacology. October 15, 2020; 177 108247.


Postsynaptic and Presynaptic NMDARs Have Distinct Roles in Visual Circuit Development., Kesner P., Cell Rep. July 28, 2020; 32 (4): 107955.                                            


De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases., Li J., Hum Mutat. December 1, 2019; 40 (12): 2393-2413.


An NMDAR positive and negative allosteric modulator series share a binding site and are interconverted by methyl groups., Perszyk R., Elife. May 24, 2018; 7                                                                         


All naturally occurring autoantibodies against the NMDA receptor subunit NR1 have pathogenic potential irrespective of epitope and immunoglobulin class., Castillo-Gómez E., Mol Psychiatry. December 1, 2017; 22 (12): 1776-1784.


A steroid modulatory domain in NR2A collaborates with NR1 exon-5 to control NMDAR modulation by pregnenolone sulfate and protons., Kostakis E., J Neurochem. November 1, 2011; 119 (3): 486-96.


The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit., Zhang Y, Zhang Y., J Neurosci. June 2, 2010; 30 (22): 7575-86.


Implementation of a fluorescence-based screening assay identifies histamine H3 receptor antagonists clobenpropit and iodophenpropit as subunit-selective N-methyl-D-aspartate receptor antagonists., Hansen KB., J Pharmacol Exp Ther. June 1, 2010; 333 (3): 650-62.


Regulation of radial glial motility by visual experience., Tremblay M., J Neurosci. November 11, 2009; 29 (45): 14066-76.                


Molecular and functional characterization of Xenopus laevis N-methyl-d-aspartate receptors., Schmidt C., Mol Cell Neurosci. October 1, 2009; 42 (2): 116-27.


Cloning and Phylogenetic Analysis of NMDA Receptor Subunits NR1, NR2A and NR2B in Xenopus laevis Tadpoles., Ewald RC., Front Mol Neurosci. September 11, 2009; 2 4.          


The serine protease plasmin cleaves the amino-terminal domain of the NR2A subunit to relieve zinc inhibition of the N-methyl-D-aspartate receptors., Yuan H., J Biol Chem. May 8, 2009; 284 (19): 12862-73.


Differential effect of high pressure on NMDA receptor currents in Xenopus laevis oocytes., Mor A., Diving Hyperb Med. December 1, 2008; 38 (4): 194-6.


Tissue-type plasminogen activator requires a co-receptor to enhance NMDA receptor function., Samson AL., J Neurochem. November 1, 2008; 107 (4): 1091-101.


The NR1 M3 domain mediates allosteric coupling in the N-methyl-D-aspartate receptor., Blanke ML., Mol Pharmacol. August 1, 2008; 74 (2): 454-65.


Constitutive activation of the N-methyl-D-aspartate receptor via cleft-spanning disulfide bonds., Blanke ML., J Biol Chem. August 1, 2008; 283 (31): 21519-29.


Modulation of glycine potency in rat recombinant NMDA receptors containing chimeric NR2A/2D subunits expressed in Xenopus laevis oocytes., Chen PE., J Physiol. January 1, 2008; 586 (1): 227-45.


Molecular and functional studies of tilapia (Oreochromis mossambicus) NMDA receptor NR1 subunits., Tzeng DW., Comp Biochem Physiol B Biochem Mol Biol. March 1, 2007; 146 (3): 402-11.


Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction., Borodinsky LN., Proc Natl Acad Sci U S A. January 2, 2007; 104 (1): 335-40.                  


RNA interference of Xenopus NMDAR NR1 in vitro and in vivo., Miskevich F., J Neurosci Methods. April 15, 2006; 152 (1-2): 65-73.


Decoy peptides that bind dynorphin noncovalently prevent NMDA receptor-mediated neurotoxicity., Woods AS., J Proteome Res. April 1, 2006; 5 (4): 1017-23.


Monoamines directly inhibit N-methyl-D-aspartate receptors expressed in Xenopus oocytes in a voltage-dependent manner., Masuko T., Neurosci Lett. November 16, 2004; 371 (1): 30-3.


Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids., Malayev A., Br J Pharmacol. February 1, 2002; 135 (4): 901-9.


The anti-craving compound acamprosate acts as a weak NMDA-receptor antagonist, but modulates NMDA-receptor subunit expression similar to memantine and MK-801., Rammes G., Neuropharmacology. May 1, 2001; 40 (6): 749-60.


Effects of volatile solvents on recombinant N-methyl-D-aspartate receptors expressed in Xenopus oocytes., Cruz SL., Br J Pharmacol. December 1, 2000; 131 (7): 1303-8.


Molecular determinants of coordinated proton and zinc inhibition of N-methyl-D-aspartate NR1/NR2A receptors., Low CM., Proc Natl Acad Sci U S A. September 26, 2000; 97 (20): 11062-7.


NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A, NR2B, NR2C, NR2D and NR3A., Goebel DJ., Brain Res Mol Brain Res. June 8, 1999; 69 (2): 164-70.


Investigation by ion channel domain transplantation of rat glutamate receptor subunits, orphan receptors and a putative NMDA receptor subunit., Villmann C., Eur J Neurosci. May 1, 1999; 11 (5): 1765-78.


Differentiation of glycine antagonist sites of N-methyl-D-aspartate receptor subtypes. Preferential interaction of CGP 61594 with NR1/2B receptors., Honer M., J Biol Chem. May 1, 1998; 273 (18): 11158-63.


Adjacent asparagines in the NR2-subunit of the NMDA receptor channel control the voltage-dependent block by extracellular Mg2+., Wollmuth LP., J Physiol. January 1, 1998; 506 ( Pt 1) 13-32.


An active-site histidine of NR1/2C mediates voltage-independent inhibition by zinc., Gray AT., Brain Res Mol Brain Res. December 1, 1997; 52 (1): 157-61.


Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulfated steroids., Park-Chung M., Mol Pharmacol. December 1, 1997; 52 (6): 1113-23.


Xenopus oocytes express a unitary glutamate receptor endogenously., Soloviev MM., J Mol Biol. October 17, 1997; 273 (1): 14-8.


Control of NMDA receptor activation by a glycine transporter co-expressed in Xenopus oocytes., Supplisson S., J Neurosci. June 15, 1997; 17 (12): 4580-90.


Functional expression of a recombinant unitary glutamate receptor from Xenopus, which contains N-methyl-D-aspartate (NMDA) and non-NMDA receptor subunits., Soloviev MM., J Biol Chem. December 20, 1996; 271 (51): 32572-9.


Subtype-selective inhibition of N-methyl-D-aspartate receptors by haloperidol., Ilyin VI., Mol Pharmacol. December 1, 1996; 50 (6): 1541-50.


Polyamine spider toxins and mammalian N-methyl-D-aspartate receptors. Structural basis for channel blocking and binding of argiotoxin636., Raditsch M., Eur J Biochem. September 1, 1996; 240 (2): 416-26.


Use of subunit-specific antisense oligodeoxynucleotides to define developmental changes in the properties of N-methyl-D-aspartate receptors., Zhong J., Mol Pharmacol. September 1, 1996; 50 (3): 631-8.


Glycine modulates ethanol inhibition of heteromeric N-methyl-D-aspartate receptors expressed in Xenopus oocytes., Buller AL., Mol Pharmacol. October 1, 1995; 48 (4): 717-23.


Developmental and regional expression pattern of a novel NMDA receptor-like subunit (NMDAR-L) in the rodent brain., Sucher NJ., J Neurosci. October 1, 1995; 15 (10): 6509-20.


Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines., Traynelis SF., Science. May 12, 1995; 268 (5212): 873-6.


Recombinant human NMDA homomeric NR1 receptors expressed in mammalian cells form a high-affinity glycine antagonist binding site., Grimwood S., J Neurochem. February 1, 1995; 64 (2): 525-30.


Subunit-specific potentiation of recombinant N-methyl-D-aspartate receptors by histamine., Williams K., Mol Pharmacol. September 1, 1994; 46 (3): 531-41.


The molecular basis of NMDA receptor subtypes: native receptor diversity is predicted by subunit composition., Buller AL., J Neurosci. September 1, 1994; 14 (9): 5471-84.


Mutational analysis of the glycine-binding site of the NMDA receptor: structural similarity with bacterial amino acid-binding proteins., Kuryatov A., Neuron. June 1, 1994; 12 (6): 1291-300.


Sensitivity of the N-methyl-D-aspartate receptor to polyamines is controlled by NR2 subunits., Williams K., Mol Pharmacol. May 1, 1994; 45 (5): 803-9.


Effects of nitroprusside and redox reagents on NMDA receptors expressed in Xenopus oocytes., Omerovic A., Brain Res Mol Brain Res. March 1, 1994; 22 (1-4): 89-96.


Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins., Brackley PT., J Pharmacol Exp Ther. September 1, 1993; 266 (3): 1573-80.

???pagination.result.page??? 1 2 ???pagination.result.next???