Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (385) Expression Attributions Wiki
XB-ANAT-298

Papers associated with superficial (and dvl1)

Limit to papers also referencing gene:
Show all superficial papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Characterization of convergent thickening, a major convergence force producing morphogenic movement in amphibians., Shook DR., Elife. April 11, 2022; 11                                     


The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development., Ossipova O., Dev Biol. December 15, 2015; 408 (2): 316-27.                              


Cell movements of the deep layer of non-neural ectoderm underlie complete neural tube closure in Xenopus., Morita H., Development. April 1, 2012; 139 (8): 1417-26.                        


MIM regulates vertebrate neural tube closure., Liu W., Development. May 1, 2011; 138 (10): 2035-47.                            


The involvement of lethal giant larvae and Wnt signaling in bottle cell formation in Xenopus embryos., Choi SC., Dev Biol. December 1, 2009; 336 (1): 68-75.      


Regulation of actin cytoskeleton architecture by Eps8 and Abi1., Roffers-Agarwal J., BMC Cell Biol. October 14, 2005; 6 36.                


Novel Daple-like protein positively regulates both the Wnt/beta-catenin pathway and the Wnt/JNK pathway in Xenopus., Kobayashi H., Mech Dev. October 1, 2005; 122 (10): 1138-53.                      


Regulation of cell polarity, radial intercalation and epiboly in Xenopus: novel roles for integrin and fibronectin., Marsden M., Development. September 1, 2001; 128 (18): 3635-47.                        


Xwnt11 is a target of Xenopus Brachyury: regulation of gastrulation movements via Dishevelled, but not through the canonical Wnt pathway., Tada M., Development. May 1, 2000; 127 (10): 2227-38.      


Analysis of Dishevelled signalling pathways during Xenopus development., Sokol SY., Curr Biol. November 1, 1996; 6 (11): 1456-67.                  

???pagination.result.page??? 1