Results 1 - 50 of 218 results
Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components. , Hantel F., J Cell Sci. May 1, 2022; 135 (9):
Xenopus laevis il11ra.L is an experimentally proven interleukin-11 receptor component that is required for tadpole tail regeneration. , Suzuki S., Sci Rep. February 3, 2022; 12 (1): 1903.
The role of cell lineage in the development of neuronal circuitry and function. , Hartenstein V., Dev Biol. July 1, 2021; 475 165-180.
Expression of an endosome-excluded Cd63 prevents axis elongation in Xenopus. , Kreis J., MicroPubl Biol. November 27, 2020; 2020
The FOXJ1 target Cfap206 is required for sperm motility, mucociliary clearance of the airways and brain development. , Beckers A., Development. June 15, 2020; 147 (21):
Evolutionarily conserved Tbx5-Wnt2/2b pathway orchestrates cardiopulmonary development. , Steimle JD., Proc Natl Acad Sci U S A. November 6, 2018; 115 (45): E10615-E10624.
The evolutionary conserved FOXJ1 target gene Fam183b is essential for motile cilia in Xenopus but dispensable for ciliary function in mice. , Beckers A., Sci Rep. October 2, 2018; 8 (1): 14678.
Cellular composition and organization of the spinal cord central canal during metamorphosis of the frog Xenopus laevis. , Edwards-Faret G., J Comp Neurol. July 1, 2018; 526 (10): 1712-1732.
An Early Function of Polycystin-2 for Left- Right Organizer Induction in Xenopus. , Vick P ., iScience. April 27, 2018; 2 76-85.
An atlas of Wnt activity during embryogenesis in Xenopus tropicalis. , Borday C., PLoS One. April 11, 2018; 13 (4): e0193606.
Musashi and Plasticity of Xenopus and Axolotl Spinal Cord Ependymal Cells. , Chernoff EAG., Front Cell Neurosci. February 27, 2018; 12 45.
Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord. , Davis O., Sci Rep. October 19, 2017; 7 (1): 13551.
A novel role of the organizer gene Goosecoid as an inhibitor of Wnt/PCP-mediated convergent extension in Xenopus and mouse. , Ulmer B., Sci Rep. February 21, 2017; 7 43010.
Zebrafish cyclin Dx is required for development of motor neuron progenitors, and its expression is regulated by hypoxia-inducible factor 2α. , Lien HW., Sci Rep. June 21, 2016; 6 28297.
c21orf59/ kurly Controls Both Cilia Motility and Polarization. , Jaffe KM., Cell Rep. March 1, 2016; 14 (8): 1841-9.
ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia. , Walentek P ., Dev Biol. December 15, 2015; 408 (2): 292-304.
ATP4 and ciliation in the neuroectoderm and endoderm of Xenopus embryos and tadpoles. , Walentek P ., Data Brief. April 20, 2015; 4 22-31.
Early development of the neural plate: new roles for apoptosis and for one of its main effectors caspase-3. , Juraver-Geslin HA ., Genesis. February 1, 2015; 53 (2): 203-24.
Temporal and spatial expression analysis of peripheral myelin protein 22 ( Pmp22) in developing Xenopus. , Tae HJ., Gene Expr Patterns. January 1, 2015; 17 (1): 26-30.
Characterization of tweety gene ( ttyh1-3) expression in Xenopus laevis during embryonic development. , Halleran AD., Gene Expr Patterns. January 1, 2015; 17 (1): 38-44.
The conserved barH-like homeobox-2 gene barhl2 acts downstream of orthodentricle-2 and together with iroquois-3 in establishment of the caudal forebrain signaling center induced by Sonic Hedgehog. , Juraver-Geslin HA ., Dev Biol. December 1, 2014; 396 (1): 107-20.
FoxA4 favours notochord formation by inhibiting contiguous mesodermal fates and restricts anterior neural development in Xenopus embryos. , Murgan S., PLoS One. October 2, 2014; 9 (10): e110559.
Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis. , Ramsbottom SA., Dev Biol. July 15, 2014; 391 (2): 207-18.
Symmetry breakage in the frog Xenopus: role of Rab11 and the ventral- right blastomere. , Tingler M., Genesis. June 1, 2014; 52 (6): 588-99.
Active repression by RARγ signaling is required for vertebrate axial elongation. , Janesick A ., Development. June 1, 2014; 141 (11): 2260-70.
A novel serotonin-secreting cell type regulates ciliary motility in the mucociliary epidermis of Xenopus tadpoles. , Walentek P ., Development. April 1, 2014; 141 (7): 1526-33.
A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model. , Borisyuk R., PLoS One. February 3, 2014; 9 (2): e89461.
Gli protein activity is controlled by multisite phosphorylation in vertebrate Hedgehog signaling. , Niewiadomski P., Cell Rep. January 16, 2014; 6 (1): 168-81.
Comparative expression analysis of cysteine-rich intestinal protein family members crip1, 2 and 3 during Xenopus laevis embryogenesis. , Hempel A., Int J Dev Biol. January 1, 2014; 58 (10-12): 841-9.
Stabilization of speckle-type POZ protein ( Spop) by Daz interacting protein 1 ( Dzip1) is essential for Gli turnover and the proper output of Hedgehog signaling. , Schwend T ., J Biol Chem. November 8, 2013; 288 (45): 32809-32820.
mRNA fluorescence in situ hybridization to determine overlapping gene expression in whole-mount mouse embryos. , Neufeld SJ., Dev Dyn. September 1, 2013; 242 (9): 1094-100.
The cytoskeletal protein Zyxin inhibits Shh signaling during the CNS patterning in Xenopus laevis through interaction with the transcription factor Gli1. , Martynova NY., Dev Biol. August 1, 2013; 380 (1): 37-48.
The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling. , Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.
Xenopus radial spoke protein 3 gene is expressed in the multiciliated cells of epidermis and otic vesicles and sequentially in the nephrostomes. , Zhang YJ , Zhang YJ ., Dev Genes Evol. May 1, 2013; 223 (3): 183-8.
Ciliogenesis and cerebrospinal fluid flow in the developing Xenopus brain are regulated by foxj1. , Hagenlocher C., Cilia. April 29, 2013; 2 (1): 12.
Pax4 is not essential for beta-cell differentiation in zebrafish embryos but modulates alpha-cell generation by repressing arx gene expression. , Djiotsa J., BMC Dev Biol. December 17, 2012; 12 37.
Ciliary and non-ciliary expression and function of PACRG during vertebrate development. , Thumberger T ., Cilia. August 1, 2012; 1 (1): 13.
A large scale screen for neural stem cell markers in Xenopus retina. , Parain K ., Dev Neurobiol. April 1, 2012; 72 (4): 491-506.
Comparative expression analysis of the H3K27 demethylases, JMJD3 and UTX, with the H3K27 methylase, EZH2, in Xenopus. , Kawaguchi A., Int J Dev Biol. January 1, 2012; 56 (4): 295-300.
Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway. , Takahashi C ., Int J Dev Biol. January 1, 2012; 56 (5): 393-402.
Modeling the connectome of a simple spinal cord. , Borisyuk R., Front Neuroinform. September 23, 2011; 5 20.
Spatial and temporal second messenger codes for growth cone turning. , Nicol X., Proc Natl Acad Sci U S A. August 16, 2011; 108 (33): 13776-81.
Essential roles of fibronectin in the development of the left- right embryonic body plan. , Pulina MV., Dev Biol. June 15, 2011; 354 (2): 208-20.
A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling. , Peyrot SM., Dev Biol. April 15, 2011; 352 (2): 254-66.
MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization. , Suzuki M ., Development. July 1, 2010; 137 (14): 2329-39.
Regulatory elements of Xenopus col2a1 drive cartilaginous gene expression in transgenic frogs. , Kerney R., Int J Dev Biol. January 1, 2010; 54 (1): 141-50.
Distinct roles for Robo2 in the regulation of axon and dendrite growth by retinal ganglion cells. , Hocking JC ., Mech Dev. January 1, 2010; 127 (1-2): 36-48.
A zebrafish gene trap line expresses GFP recapturing expression pattern of foxj1b. , Tian T., J Genet Genomics. October 1, 2009; 36 (10): 581-9.
Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. , Maisonneuve C., Development. September 1, 2009; 136 (17): 3019-30.
Flow on the right side of the gastrocoel roof plate is dispensable for symmetry breakage in the frog Xenopus laevis. , Vick P ., Dev Biol. July 15, 2009; 331 (2): 281-91.