Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (50) Expression Attributions Wiki
XB-ANAT-3503

Papers associated with pharyngeal endoderm

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

The entire mesodermal mantle behaves as Spemann's organizer in dorsoanterior enhanced Xenopus laevis embryos., Kao KR., Dev Biol. May 1, 1988; 127 (1): 64-77.                      


Localization of c-myc expression during oogenesis and embryonic development in Xenopus laevis., Hourdry J., Development. December 1, 1988; 104 (4): 631-41.          


The specification of heart mesoderm occurs during gastrulation in Xenopus laevis., Sater AK., Development. April 1, 1989; 105 (4): 821-30.


Goosecoid and the organizer., De Roberts EM., Dev Suppl. January 1, 1992; 167-71.


Xwnt-5A: a maternal Wnt that affects morphogenetic movements after overexpression in embryos of Xenopus laevis., Moon RT., Development. September 1, 1993; 119 (1): 97-111.                  


The development of the neural crest in amphibians., Epperlein HH., Ann Anat. December 1, 1993; 175 (6): 483-99.


Sequential expression of HNF-3 beta and HNF-3 alpha by embryonic organizing centers: the dorsal lip/node, notochord and floor plate., Ruiz i Altaba A., Mech Dev. December 1, 1993; 44 (2-3): 91-108.                


Localization of PDGF A and PDGFR alpha mRNA in Xenopus embryos suggests signalling from neural ectoderm and pharyngeal endoderm to neural crest cells., Ho L., Mech Dev. December 1, 1994; 48 (3): 165-74.


Dorsalizing and neuralizing properties of Xdsh, a maternally expressed Xenopus homolog of dishevelled., Sokol SY., Development. June 1, 1995; 121 (6): 1637-47.              


Molecular analysis and developmental expression of the focal adhesion kinase pp125FAK in Xenopus laevis., Hens MD., Dev Biol. August 1, 1995; 170 (2): 274-88.                    


Initiation of anterior head-specific gene expression in uncommitted ectoderm of Xenopus laevis by ammonium chloride., Mathers PH., Dev Biol. October 1, 1995; 171 (2): 641-54.    


tinman, a Drosophila homeobox gene required for heart and visceral mesoderm specification, may be represented by a family of genes in vertebrates: XNkx-2.3, a second vertebrate homologue of tinman., Evans SM., Development. November 1, 1995; 121 (11): 3889-99.                


A new tinman-related gene, nkx2.7, anticipates the expression of nkx2.5 and nkx2.3 in zebrafish heart and pharyngeal endoderm., Lee KH., Dev Biol. December 15, 1996; 180 (2): 722-31.


The role of planar and early vertical signaling in patterning the expression of Hoxb-1 in Xenopus., Poznanski A., Dev Biol. April 15, 1997; 184 (2): 351-66.                


The KH domain protein encoded by quaking functions as a dimer and is essential for notochord development in Xenopus embryos., Zorn AM., Genes Dev. September 1, 1997; 11 (17): 2176-90.                  


Neovascularization of the Xenopus embryo., Cleaver O., Dev Dyn. September 1, 1997; 210 (1): 66-77.        


Vertebrate homologs of tinman and bagpipe: roles of the homeobox genes in cardiovascular development., Tanaka M., Dev Genet. January 1, 1998; 22 (3): 239-49.


Murine cerberus homologue mCer-1: a candidate anterior patterning molecule., Biben C., Dev Biol. February 15, 1998; 194 (2): 135-51.    


Hox group 3 paralogs regulate the development and migration of the thymus, thyroid, and parathyroid glands., Manley NR., Dev Biol. March 1, 1998; 195 (1): 1-15.


Patterns of gene expression in the core of Spemann's organizer and activin-treated ectoderm in Cynops pyrrhogaster., Yokota C., Dev Growth Differ. June 1, 1998; 40 (3): 335-41.


The Xenopus bagpipe-related homeobox gene zampogna is expressed in the pharyngeal endoderm and the visceral musculature of the midgut., Newman CS., Dev Genes Evol. February 1, 1999; 209 (2): 132-4.


Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin-B ligands., Helbling PM., Dev Dyn. December 1, 1999; 216 (4-5): 361-73.      


A role for GATA-4/5/6 in the regulation of Nkx2.5 expression with implications for patterning of the precardiac field., Jiang Y., Dev Biol. December 1, 1999; 216 (1): 57-71.            


Transient cardiac expression of the tinman-family homeobox gene, XNkx2-10., Newman CS., Mech Dev. March 1, 2000; 91 (1-2): 369-73.  


Xenopus Xenf: an early endodermal nuclear factor that is regulated in a pathway distinct from Sox17 and Mix-related gene pathways., Nakatani J., Mech Dev. March 1, 2000; 91 (1-2): 81-9.    


BMP signaling is required for heart formation in vertebrates., Shi Y, Shi Y., Dev Biol. August 15, 2000; 224 (2): 226-37.          


A direct screen for secreted proteins in Xenopus embryos identifies distinct activities for the Wnt antagonists Crescent and Frzb-1., Pera EM., Mech Dev. September 1, 2000; 96 (2): 183-95.                  


Efficient Cre-mediated deletion in cardiac progenitor cells conferred by a 3'UTR-ires-Cre allele of the homeobox gene Nkx2-5., Stanley EG., Int J Dev Biol. January 1, 2002; 46 (4): 431-9.


Smad10 is required for formation of the frog nervous system., LeSueur JA., Dev Cell. June 1, 2002; 2 (6): 771-83.            


Primitive and definitive blood share a common origin in Xenopus: a comparison of lineage techniques used to construct fate maps., Lane MC., Dev Biol. August 1, 2002; 248 (1): 52-67.                  


Cloning and expression of a novel armadillo motif containing gene in Xenopus., Chang JY., Mech Dev. December 1, 2002; 119 Suppl 1 S83-5.            


Xolloid-related: a novel BMP1/Tolloid-related metalloprotease is expressed during early Xenopus development., Dale L., Mech Dev. December 1, 2002; 119 (2): 177-90.      


Aortic arch and pharyngeal phenotype in the absence of BMP-dependent neural crest in the mouse., Ohnemus S., Mech Dev. December 1, 2002; 119 (2): 127-35.


Cloning and expression patterns of dystroglycan during the early development of Xenopus laevis., Moreau N., Dev Genes Evol. July 1, 2003; 213 (7): 355-9.


Regulation of heart size in Xenopus laevis., Garriock RJ., Differentiation. October 1, 2003; 71 (8): 506-15.            


Identification of a second Xenopus twisted gastrulation gene., Oelgeschläger M., Int J Dev Biol. February 1, 2004; 48 (1): 57-61.            


Xenopus laevis FoxE1 is primarily expressed in the developing pituitary and thyroid., El-Hodiri HM., Int J Dev Biol. January 1, 2005; 49 (7): 881-4.            


Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development., Pohl BS., Gene. January 3, 2005; 344 21-32.      


A Serpin family gene, protease nexin-1 has an activity distinct from protease inhibition in early Xenopus embryos., Onuma Y., Mech Dev. June 1, 2006; 123 (6): 463-71.        


The amphibian second heart field: Xenopus islet-1 is required for cardiovascular development., Brade T., Dev Biol. November 15, 2007; 311 (2): 297-310.          


Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline., Christine KS., Dev Cell. April 1, 2008; 14 (4): 616-23.                                


Characterization of molecular markers to assess cardiac cushions formation in Xenopus., Lee YH, Lee YH., Dev Dyn. December 1, 2009; 238 (12): 3257-65.            


Identification and gastrointestinal expression of Xenopus laevis FoxF2., McLin VA., Int J Dev Biol. January 1, 2010; 54 (5): 919-24.          


Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2., Guiral EC., Dev Biol. May 15, 2010; 341 (2): 375-88.                              


Cardiac neural crest is dispensable for outflow tract septation in Xenopus., Lee YH., Development. May 1, 2011; 138 (10): 2025-34.                  


Gastrulation and pre-gastrulation morphogenesis, inductions, and gene expression: similarities and dissimilarities between urodelean and anuran embryos., Kaneda T., Dev Biol. September 1, 2012; 369 (1): 1-18.          


High cell-autonomy of the anterior endomesoderm viewed in blastomere fate shift during regulative development in the isolated right halves of four-cell stage Xenopus embryos., Koga M., Dev Growth Differ. September 1, 2012; 54 (7): 717-29.              


Early development of the thymus in Xenopus laevis., Lee YH, Lee YH., Dev Dyn. February 1, 2013; 242 (2): 164-78.                            


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development., Yan B., Dev Dyn. February 1, 2015; 244 (2): 181-210.                          

???pagination.result.page??? 1