Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (44) Expression Attributions Wiki
XB-ANAT-3567

Papers associated with olfactory sensory neuron

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

S100Z is expressed in a lateral subpopulation of olfactory receptor neurons in the main olfactory system of Xenopus laevis., Kahl M., Dev Neurobiol. March 4, 2024;               


Functional odor map heterogeneity is based on multifaceted glomerular connectivity in larval Xenopus olfactory bulb., Offner T., iScience. September 15, 2023; 26 (9): 107518.                                  


Distinct interhemispheric connectivity at the level of the olfactory bulb emerges during Xenopus laevis metamorphosis., Weiss L., Cell Tissue Res. December 1, 2021; 386 (3): 491-511.            


Resolving different presynaptic activity patterns within single olfactory glomeruli of Xenopus laevis larvae., Topci R., Sci Rep. July 9, 2021; 11 (1): 14258.                              


Axon terminals control endolysosome diffusion to support synaptic remodelling., Terni B., Life Sci Alliance. July 5, 2021; 4 (8):                   


Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons., Wang C., Pest Manag Sci. September 1, 2020; 76 (9): 3159-3167.          


Embryonic Epidermal Lectins in Three Amphibian Species, Rana ornativentris, Bufo japonicus formosus, and Cynops pyrrhogaster., Nagata S., Zoolog Sci. August 1, 2020; 37 (4): 338-345.            


Chemical modification of proteins by insertion of synthetic peptides using tandem protein trans-splicing., Khoo KK., Nat Commun. May 8, 2020; 11 (1): 2284.            


Bcl11b controls odorant receptor class choice in mice., Enomoto T., Commun Biol. January 1, 2019; 2 296.                


Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles., Terni B., J Comp Neurol. December 1, 2017; 525 (17): 3769-3783.


Neuronal degeneration and regeneration induced by axotomy in the olfactory epithelium of Xenopus laevis., Cervino AS., Dev Neurobiol. November 1, 2017; 77 (11): 1308-1320.                    


Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group., Jungblut LD., J Morphol. September 1, 2017; 278 (9): 1208-1219.


Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit., Hawkins SJ., Front Cell Neurosci. July 21, 2017; 11 380.            


Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis., Dittrich K., J Comp Neurol. April 1, 2016; 524 (5): 986-98.            


Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding., Bao G., Eur J Neurosci. December 1, 2015; 42 (11): 2985-95.                      


An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction., Hutch CR., Neuroscience. August 6, 2015; 300 539-53.


Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity., Li Z., PLoS Genet. September 25, 2014; 10 (9): e1004600.            


Fez family transcription factors: controlling neurogenesis and cell fate in the developing mammalian nervous system., Eckler MJ., Bioessays. August 1, 2014; 36 (8): 788-97.


Phospholipase C and diacylglycerol mediate olfactory responses to amino acids in the main olfactory epithelium of an amphibian., Sansone A., PLoS One. January 17, 2014; 9 (1): e87721.          


Exotic models may offer unique opportunities to decipher specific scientific question: the case of Xenopus olfactory system., Gascuel J., Anat Rec (Hoboken). September 1, 2013; 296 (9): 1453-61.    


Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis., Amano T., PLoS One. January 1, 2012; 7 (4): e33922.            


Amino acid- vs. peptide-odorants: responses of individual olfactory receptor neurons in an aquatic species., Hassenklöver T., PLoS One. January 1, 2012; 7 (12): e53097.        


The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels., Breunig E., J Biol Chem. August 12, 2011; 286 (32): 28041-8.        


Odorant receptor from the southern house mosquito narrowly tuned to the oviposition attractant skatole., Hughes DT., J Chem Ecol. August 1, 2010; 36 (8): 797-800.  


An odorant receptor from the southern house mosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants., Pelletier J., PLoS One. April 8, 2010; 5 (4): e10090.          


Insect olfactory receptor complex functions as a ligand-gated ionotropic channel., Touhara K., Ann N Y Acad Sci. July 1, 2009; 1170 177-80.


Highly specific responses to amine odorants of individual olfactory receptor neurons in situ., Gliem S., Eur J Neurosci. June 1, 2009; 29 (12): 2315-26.            


Insect olfactory receptors are heteromeric ligand-gated ion channels., Sato K., Nature. April 24, 2008; 452 (7190): 1002-6.


Cannabinoid action in the olfactory epithelium., Czesnik D., Proc Natl Acad Sci U S A. February 20, 2007; 104 (8): 2967-72.        


ATP activates both receptor and sustentacular supporting cells in the olfactory epithelium of Xenopus laevis tadpoles., Czesnik D., Eur J Neurosci. January 1, 2006; 23 (1): 119-28.          


3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis., Gaudin A., J Comp Neurol. September 5, 2005; 489 (4): 403-24.


Individual olfactory sensory neurons project into more than one glomerulus in Xenopus laevis tadpole olfactory bulb., Nezlin LP., J Comp Neurol. January 17, 2005; 481 (3): 233-9.


Cascades of response vectors of olfactory receptor neurons in Xenopus laevis tadpoles., Schild D., Eur J Neurosci. October 1, 2004; 20 (8): 2111-23.


Expression of vomeronasal receptor genes in Xenopus laevis., Hagino-Yamagishi K., J Comp Neurol. April 26, 2004; 472 (2): 246-56.                      


Classes and narrowing selectivity of olfactory receptor neurons of Xenopus laevis tadpoles., Manzini I., J Gen Physiol. February 1, 2004; 123 (2): 99-107.              


Organization of glomeruli in the main olfactory bulb of Xenopus laevis tadpoles., Nezlin LP., J Comp Neurol. September 22, 2003; 464 (3): 257-68.


Xath5 regulates neurogenesis in the Xenopus olfactory placode., Burns CJ., Dev Dyn. December 1, 2002; 225 (4): 536-43.        


Cloning and characterization of an arginine vasotocin receptor from the euryhaline flounder Platichthys flesus., Warne JM., Gen Comp Endocrinol. June 1, 2001; 122 (3): 312-9.


Proteinase-activated receptor 2 (PAR(2)): development of a ligand-binding assay correlating with activation of PAR(2) by PAR(1)- and PAR(2)-derived peptide ligands., Al-Ani B., J Pharmacol Exp Ther. August 1, 1999; 290 (2): 753-60.


Responses of Xenopus laevis water nose to water-soluble and volatile odorants., Iida A., J Gen Physiol. July 1, 1999; 114 (1): 85-92.                


Two olfactory marker proteins in Xenopus laevis., Rössler P., J Comp Neurol. June 8, 1998; 395 (3): 273-80.          


Combinatorial diffusion assay used to identify topically active melanocyte-stimulating hormone receptor antagonists., Quillan JM., Proc Natl Acad Sci U S A. March 28, 1995; 92 (7): 2894-8.            


Basolateral uptake and tubular metabolism of L-citrulline in the isolated-perfused non-filtering kidney of the African clawed toad (Xenopus laevis)., Gekle M., Pflugers Arch. November 1, 1991; 419 (5): 492-8.


Microinjection of purified ornithine decarboxylase into Xenopus oocytes selectively stimulates ribosomal RNA synthesis., Russell DH., Proc Natl Acad Sci U S A. March 1, 1983; 80 (5): 1318-21.

???pagination.result.page??? 1