Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (42) Expression Attributions Wiki
XB-ANAT-3567

Papers associated with olfactory sensory neuron

Limit to papers also referencing gene:
Results 1 - 42 of 42 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Distinct interhemispheric connectivity at the level of the olfactory bulb emerges during Xenopus laevis metamorphosis., Weiss L., Cell Tissue Res. December 1, 2021; 386 (3): 491-511.            


Resolving different presynaptic activity patterns within single olfactory glomeruli of Xenopus laevis larvae., Topci R., Sci Rep. July 9, 2021; 11 (1): 14258.                              


Axon terminals control endolysosome diffusion to support synaptic remodelling., Terni B., Life Sci Alliance. July 5, 2021; 4 (8):                   


Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons., Wang C., Pest Manag Sci. September 1, 2020; 76 (9): 3159-3167.          


Embryonic Epidermal Lectins in Three Amphibian Species, Rana ornativentris, Bufo japonicus formosus, and Cynops pyrrhogaster., Nagata S., Zoolog Sci. August 1, 2020; 37 (4): 338-345.            


Chemical modification of proteins by insertion of synthetic peptides using tandem protein trans-splicing., Khoo KK., Nat Commun. May 8, 2020; 11 (1): 2284.            


Bcl11b controls odorant receptor class choice in mice., Enomoto T., Commun Biol. August 7, 2019; 2 296.                


Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles., Terni B., J Comp Neurol. December 1, 2017; 525 (17): 3769-3783.


Neuronal degeneration and regeneration induced by axotomy in the olfactory epithelium of Xenopus laevis., Cervino AS., Dev Neurobiol. November 1, 2017; 77 (11): 1308-1320.                    


Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group., Jungblut LD., J Morphol. September 1, 2017; 278 (9): 1208-1219.


Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit., Hawkins SJ., Front Cell Neurosci. July 21, 2017; 11 380.            


Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis., Dittrich K., J Comp Neurol. April 1, 2016; 524 (5): 986-98.            


Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding., Bao G., Eur J Neurosci. December 1, 2015; 42 (11): 2985-95.                      


An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction., Hutch CR., Neuroscience. August 6, 2015; 300 539-53.


Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity., Li Z., PLoS Genet. September 1, 2014; 10 (9): e1004600.            


Fez family transcription factors: controlling neurogenesis and cell fate in the developing mammalian nervous system., Eckler MJ., Bioessays. August 1, 2014; 36 (8): 788-97.


Phospholipase C and diacylglycerol mediate olfactory responses to amino acids in the main olfactory epithelium of an amphibian., Sansone A., PLoS One. January 27, 2014; 9 (1): e87721.          


Exotic models may offer unique opportunities to decipher specific scientific question: the case of Xenopus olfactory system., Gascuel J., Anat Rec (Hoboken). September 1, 2013; 296 (9): 1453-61.    


Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis., Amano T., PLoS One. January 1, 2012; 7 (4): e33922.            


Amino acid- vs. peptide-odorants: responses of individual olfactory receptor neurons in an aquatic species., Hassenklöver T., PLoS One. January 1, 2012; 7 (12): e53097.        


The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels., Breunig E., J Biol Chem. August 12, 2011; 286 (32): 28041-8.        


Odorant receptor from the southern house mosquito narrowly tuned to the oviposition attractant skatole., Hughes DT., J Chem Ecol. August 1, 2010; 36 (8): 797-800.  


An odorant receptor from the southern house mosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants., Pelletier J., PLoS One. April 8, 2010; 5 (4): e10090.          


Insect olfactory receptor complex functions as a ligand-gated ionotropic channel., Touhara K., Ann N Y Acad Sci. July 1, 2009; 1170 177-80.


Highly specific responses to amine odorants of individual olfactory receptor neurons in situ., Gliem S., Eur J Neurosci. June 1, 2009; 29 (12): 2315-26.            


Insect olfactory receptors are heteromeric ligand-gated ion channels., Sato K., Nature. April 24, 2008; 452 (7190): 1002-6.


Cannabinoid action in the olfactory epithelium., Czesnik D., Proc Natl Acad Sci U S A. February 20, 2007; 104 (8): 2967-72.        


ATP activates both receptor and sustentacular supporting cells in the olfactory epithelium of Xenopus laevis tadpoles., Czesnik D., Eur J Neurosci. January 1, 2006; 23 (1): 119-28.          


3D atlas describing the ontogenic evolution of the primary olfactory projections in the olfactory bulb of Xenopus laevis., Gaudin A., J Comp Neurol. September 5, 2005; 489 (4): 403-24.


Individual olfactory sensory neurons project into more than one glomerulus in Xenopus laevis tadpole olfactory bulb., Nezlin LP., J Comp Neurol. January 17, 2005; 481 (3): 233-9.


Cascades of response vectors of olfactory receptor neurons in Xenopus laevis tadpoles., Schild D., Eur J Neurosci. October 1, 2004; 20 (8): 2111-23.


Expression of vomeronasal receptor genes in Xenopus laevis., Hagino-Yamagishi K., J Comp Neurol. April 26, 2004; 472 (2): 246-56.                      


Classes and narrowing selectivity of olfactory receptor neurons of Xenopus laevis tadpoles., Manzini I., J Gen Physiol. February 1, 2004; 123 (2): 99-107.              


Organization of glomeruli in the main olfactory bulb of Xenopus laevis tadpoles., Nezlin LP., J Comp Neurol. September 22, 2003; 464 (3): 257-68.


Xath5 regulates neurogenesis in the Xenopus olfactory placode., Burns CJ., Dev Dyn. December 1, 2002; 225 (4): 536-43.        


Cloning and characterization of an arginine vasotocin receptor from the euryhaline flounder Platichthys flesus., Warne JM., Gen Comp Endocrinol. June 1, 2001; 122 (3): 312-9.


Proteinase-activated receptor 2 (PAR(2)): development of a ligand-binding assay correlating with activation of PAR(2) by PAR(1)- and PAR(2)-derived peptide ligands., Al-Ani B., J Pharmacol Exp Ther. August 1, 1999; 290 (2): 753-60.


Responses of Xenopus laevis water nose to water-soluble and volatile odorants., Iida A., J Gen Physiol. July 1, 1999; 114 (1): 85-92.                


Two olfactory marker proteins in Xenopus laevis., Rössler P., J Comp Neurol. June 8, 1998; 395 (3): 273-80.          


Combinatorial diffusion assay used to identify topically active melanocyte-stimulating hormone receptor antagonists., Quillan JM., Proc Natl Acad Sci U S A. March 28, 1995; 92 (7): 2894-8.            


Basolateral uptake and tubular metabolism of L-citrulline in the isolated-perfused non-filtering kidney of the African clawed toad (Xenopus laevis)., Gekle M., Pflugers Arch. November 1, 1991; 419 (5): 492-8.


Microinjection of purified ornithine decarboxylase into Xenopus oocytes selectively stimulates ribosomal RNA synthesis., Russell DH., Proc Natl Acad Sci U S A. March 1, 1983; 80 (5): 1318-21.

Page(s): 1