Results 1 - 50 of 1095 results
Anterior patterning genes induced by Zic1 are sensitive to retinoic acid and its metabolite, 4-oxo-RA. , Dubey A., Dev Dyn. March 1, 2022; 251 (3): 498-512.
Generation of a new six1-null line in Xenopus tropicalis for study of development and congenital disease. , Coppenrath K ., Genesis. December 1, 2021; 59 (12): e23453.
Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. , Almasoudi SH., Front Neuroanat. September 20, 2021; 15 722374.
A laboratory investigation into features of morphology and physiology for their potential to predict reproductive success in male frogs. , Orton F., PLoS One. November 11, 2020; 15 (11): e0241625.
Dynamic expression of MMP28 during cranial morphogenesis. , Gouignard N ., Philos Trans R Soc Lond B Biol Sci. October 12, 2020; 375 (1809): 20190559.
Stabilization of Gaze during Early Xenopus Development by Swimming-Related Utricular Signals. , Lambert FM ., Curr Biol. February 24, 2020; 30 (4): 746-753.e4.
Nutritional implications of olives and sugar: attenuation of post-prandial glucose spikes in healthy volunteers by inhibition of sucrose hydrolysis and glucose transport by oleuropein. , Kerimi A., Eur J Nutr. April 1, 2019; 58 (3): 1315-1330.
Transplantation of Ears Provides Insights into Inner Ear Afferent Pathfinding Properties. , Gordy C., Dev Neurobiol. November 1, 2018; 78 (11): 1064-1080.
The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis. , Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.
Exposure to an anti-androgenic herbicide negatively impacts reproductive physiology and fertility in Xenopus tropicalis. , Orton F., Sci Rep. June 14, 2018; 8 (1): 9124.
FUS Phase Separation Is Modulated by a Molecular Chaperone and Methylation of Arginine Cation-π Interactions. , Qamar S., Cell. April 19, 2018; 173 (3): 720-734.e15.
Large, long range tensile forces drive convergence during Xenopus blastopore closure and body axis elongation. , Shook DR ., Elife. March 13, 2018; 7
RAPGEF5 Regulates Nuclear Translocation of β-Catenin. , Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.
Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo. , Gouignard N ., PLoS One. January 18, 2018; 13 (1): e0191751.
Pou3f transcription factor expression during embryonic development highlights distinct pou3f3 and pou3f4 localization in the Xenopus laevis kidney. , Cosse-Etchepare C., Int J Dev Biol. January 1, 2018; 62 (4-5): 325-333.
Effect of triclosan on anuran development and growth in a larval amphibian growth and development assay. , Fort DJ., J Appl Toxicol. October 1, 2017; 37 (10): 1182-1194.
Xenopus pitx3 target genes lhx1 and xnr5 are identified using a novel three-fluor flow cytometry-based analysis of promoter activation and repression. , Hooker LN., Dev Dyn. September 1, 2017; 246 (9): 657-669.
Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells. , Zhang Z ., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.
Caspase-9 has a nonapoptotic function in Xenopus embryonic primitive blood formation. , Tran HT., J Cell Sci. July 15, 2017; 130 (14): 2371-2381.
The Cannabinoid Receptor Interacting Proteins 1 of zebrafish are not required for morphological development, viability or fertility. , Fin L., Sci Rep. July 7, 2017; 7 (1): 4858.
Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus. , Martinez-De Luna RI ., Dev Biol. June 15, 2017; 426 (2): 219-235.
Hypothermia-induced dystonia and abnormal cerebellar activity in a mouse model with a single disease-mutation in the sodium-potassium pump. , Isaksen TJ., PLoS Genet. May 4, 2017; 13 (5): e1006763.
Collinear Hox-Hox interactions are involved in patterning the vertebrate anteroposterior (A-P) axis. , Zhu K ., PLoS One. April 11, 2017; 12 (4): e0175287.
Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis. , Ding Y ., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.
Members of the Rusc protein family interact with Sufu and inhibit vertebrate Hedgehog signaling. , Jin Z., Development. November 1, 2016; 143 (21): 3944-3955.
Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. , Riddiford N., Elife. August 31, 2016; 5
Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis. , Dittrich K., J Comp Neurol. April 1, 2016; 524 (5): 986-98.
Lens regeneration from the cornea requires suppression of Wnt/ β-catenin signaling. , Hamilton PW., Exp Eye Res. April 1, 2016; 145 206-215.
N-Glycans in Xenopus laevis testis characterised by lectin histochemistry. , Valbuena G., Reprod Fertil Dev. March 1, 2016; 28 (3): 337-48.
Structural Changes of the Active Center during the Photoactivation of Xenopus (6-4) Photolyase. , Yamada D., Biochemistry. February 2, 2016; 55 (4): 715-23.
Functional Cloning Using a Xenopus Oocyte Expression System. , Plautz CZ., J Vis Exp. January 30, 2016; (107): e53518.
Differential requirement of bone morphogenetic protein receptors Ia (ALK3) and Ib (ALK6) in early embryonic patterning and neural crest development. , Schille C., BMC Dev Biol. January 19, 2016; 16 1.
Expressional characterization of mRNA (guanine-7) methyltransferase ( rnmt) during early development of Xenopus laevis. , Lokapally A., Int J Dev Biol. January 1, 2016; 60 (1-3): 65-9.
Noggin 1 overexpression in retinal progenitors affects bipolar cell generation. , Messina A., Int J Dev Biol. January 1, 2016; 60 (4-6): 151-7.
Functionality and stability data of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology. , Padilla-Morales LF., Data Brief. December 25, 2015; 6 433-7.
Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. , Nakayama T ., Dev Biol. December 15, 2015; 408 (2): 328-44.
Ear manipulations reveal a critical period for survival and dendritic development at the single-cell level in Mauthner neurons. , Elliott KL., Dev Neurobiol. December 1, 2015; 75 (12): 1339-51.
Structure-dependent inhibition of the human α1β2γ2 GABAA receptor by piperazine derivatives: A novel mode of action. , Hondebrink L., Neurotoxicology. December 1, 2015; 51 1-9.
RNA-Seq and microarray analysis of the Xenopus inner ear transcriptome discloses orthologous OMIM(®) genes for hereditary disorders of hearing and balance. , Ramírez-Gordillo D., BMC Res Notes. November 18, 2015; 8 691.
Dose-Dependent Early Life Stage Toxicities in Xenopus laevis Exposed In Ovo to Selenium. , Massé AJ., Environ Sci Technol. November 17, 2015; 49 (22): 13658-66.
NF2/ Merlin is required for the axial pattern formation in the Xenopus laevis embryo. , Zhu X., Mech Dev. November 1, 2015; 138 Pt 3 305-12.
Gremlin1 induces anterior- posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration. , Wang YH., Mech Dev. November 1, 2015; 138 Pt 3 256-67.
Cooperative and independent functions of FGF and Wnt signaling during early inner ear development. , Wright KD., BMC Dev Biol. October 6, 2015; 15 33.
A Database of microRNA Expression Patterns in Xenopus laevis. , Ahmed A., PLoS One. October 5, 2015; 10 (10): e0138313.
Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain. , Ware M., Dev Dyn. October 1, 2015; 244 (10): 1202-14.
Spinal corollary discharge modulates motion sensing during vertebrate locomotion. , Chagnaud BP., Nat Commun. September 4, 2015; 6 7982.
Light sensitivity in a vertebrate mechanoreceptor? , Baker GE., J Exp Biol. September 1, 2015; 218 (Pt 18): 2826-9.
Functional analysis of Hairy genes in Xenopus neural crest initial specification and cell migration. , Vega-López GA., Dev Dyn. August 1, 2015; 244 (8): 988-1013.
Inner ear development: building a spiral ganglion and an organ of Corti out of unspecified ectoderm. , Fritzsch B ., Cell Tissue Res. July 1, 2015; .
Transcriptional regulator PRDM12 is essential for human pain perception. , Chen YC , Chen YC ., Nat Genet. July 1, 2015; 47 (7): 803-8.