Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (143) Expression Attributions Wiki
XB-ANAT-3732

Papers associated with olfactory epithelium

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Microinjection of purified ornithine decarboxylase into Xenopus oocytes selectively stimulates ribosomal RNA synthesis., Russell DH., Proc Natl Acad Sci U S A. March 1, 1983; 80 (5): 1318-21.


Olfaction by melanophores: what does it mean?, Lerner MR., Proc Natl Acad Sci U S A. January 1, 1988; 85 (1): 261-4.


Inward rectifier produced by Xenopus oocytes injected with mRNA extracted from carp olfactory epithelium., Yoshii K., Synapse. January 1, 1989; 3 (3): 234-8.


Thyroxine-dependent modulations of the expression of the neural cell adhesion molecule N-CAM during Xenopus laevis metamorphosis., Levi G., Development. April 1, 1990; 108 (4): 681-92.                


Olfactory neurons express a unique glycosylated form of the neural cell adhesion molecule (N-CAM)., Key B., J Cell Biol. May 1, 1990; 110 (5): 1729-43.                  


Basolateral uptake and tubular metabolism of L-citrulline in the isolated-perfused non-filtering kidney of the African clawed toad (Xenopus laevis)., Gekle M., Pflugers Arch. November 1, 1991; 419 (5): 492-8.


Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium., Altenhofen W., Proc Natl Acad Sci U S A. November 1, 1991; 88 (21): 9868-72.


Calcium-binding proteins in chemoreceptors of Xenopus laevis., Kerschbaum HH., Tissue Cell. January 1, 1992; 24 (5): 719-24.


Xlcaax-1 is localized to the basolateral membrane of kidney tubule and other polarized epithelia during Xenopus development., Cornish JA., Dev Biol. March 1, 1992; 150 (1): 108-20.                  


Expression of olfactory receptors in Xenopus oocytes., Dahmen N., J Neurochem. March 1, 1992; 58 (3): 1176-9.


Peripheral origin of olfactory nerve fibers by-passing the olfactory bulb in Xenopus laevis., Hofmann MH., Dev Biol. August 28, 1992; 589 (1): 161-3.


Morphological and quantitative evaluation of olfactory bulb development in Xenopus after olfactory placode transplantation., Byrd CA., J Comp Neurol. May 22, 1993; 331 (4): 551-63.


A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP., Liman ER., Neuron. September 1, 1994; 13 (3): 611-21.


Differential expression of two cell surface proteins, neuropilin and plexin, in Xenopus olfactory axon subclasses., Satoda M., J Neurosci. January 1, 1995; 15 (1 Pt 2): 942-55.                  


A histidine residue associated with the gate of the cyclic nucleotide-activated channels in rod photoreceptors., Gordon SE., Neuron. January 1, 1995; 14 (1): 177-83.


Combinatorial diffusion assay used to identify topically active melanocyte-stimulating hormone receptor antagonists., Quillan JM., Proc Natl Acad Sci U S A. March 28, 1995; 92 (7): 2894-8.            


Responses recorded from the frog olfactory epithelium after stimulation with R(+)- and S(-)-nicotine., Thürauf N., Chem Senses. June 1, 1995; 20 (3): 337-44.


Development of the olfactory epithelium and vomeronasal organ in the Japanese reddish frog, Rana japonica., Taniguchi K., J Vet Med Sci. January 1, 1996; 58 (1): 7-15.


Developmental expression of a neuron-specific beta-tubulin in frog (Xenopus laevis): a marker for growing axons during the embryonic period., Moody SA., J Comp Neurol. January 8, 1996; 364 (2): 219-30.            


Bulbar representation of the 'water-nose' during Xenopus ontogeny., Meyer DL., Neurosci Lett. December 13, 1996; 220 (2): 109-12.


Cellular and molecular interactions in the development of the Xenopus olfactory system., Reiss JO., Semin Cell Dev Biol. April 1, 1997; 8 (2): 171-9.            


Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors., Cau E., Development. April 1, 1997; 124 (8): 1611-21.


Thrombospondins in early Xenopus embryos: dynamic patterns of expression suggest diverse roles in nervous system, notochord, and muscle development., Urry LA., Dev Dyn. April 1, 1998; 211 (4): 390-407.                              


Two olfactory marker proteins in Xenopus laevis., Rössler P., J Comp Neurol. June 8, 1998; 395 (3): 273-80.          


Ultrastructure of the olfactory organ in the clawed frog, Xenopus laevis, during larval development and metamorphosis., Hansen A., J Comp Neurol. August 24, 1998; 398 (2): 273-88.


Fine structure of three types of olfactory organs in Xenopus laevis., Oikawa T., Anat Rec. October 1, 1998; 252 (2): 301-10.


Truncation releases olfactory receptors from the endoplasmic reticulum of heterologous cells., Gimelbrant AA., J Neurochem. June 1, 1999; 72 (6): 2301-11.


Responses of Xenopus laevis water nose to water-soluble and volatile odorants., Iida A., J Gen Physiol. July 1, 1999; 114 (1): 85-92.                


Proteinase-activated receptor 2 (PAR(2)): development of a ligand-binding assay correlating with activation of PAR(2) by PAR(1)- and PAR(2)-derived peptide ligands., Al-Ani B., J Pharmacol Exp Ther. August 1, 1999; 290 (2): 753-60.


Differential antigen expression during metamorphosis in the tripartite olfactory system of the African clawed frog, Xenopus laevis., Petti MA., Cell Tissue Res. September 1, 1999; 297 (3): 383-96.


The role of the brain in metamorphosis of the olfactory epithelium in the frog, Xenopus laevis., Higgs DM., Brain Res Dev Brain Res. December 10, 1999; 118 (1-2): 185-95.


OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways., Hata A., Cell. January 21, 2000; 100 (2): 229-40.      


Expression patterns of glycoconjugates in the three distinctive olfactory pathways of the clawed frog, Xenopus laevis., Saito S., J Vet Med Sci. February 1, 2000; 62 (2): 153-9.


Responses to putative second messengers and odorants in water nose olfactory neurons of Xenopus laevis., Iida A., Chem Senses. February 1, 2000; 25 (1): 55-9.


Expression of two novel mouse Iroquois homeobox genes during neurogenesis., Cohen DR., Mech Dev. March 1, 2000; 91 (1-2): 317-21.


Xenopus laevis gelatinase B (Xmmp-9): development, regeneration, and wound healing., Carinato ME., Dev Dyn. April 1, 2000; 217 (4): 377-87.      


Expression of neural properties in olfactory cytokeratin-positive basal cell line., Satoh M., Brain Res Dev Brain Res. June 30, 2000; 121 (2): 219-22.


Xenopus laevis peripherin (XIF3) is expressed in radial glia and proliferating neural epithelial cells as well as in neurons., Gervasi C., J Comp Neurol. July 31, 2000; 423 (3): 512-31.                      


Mutation of a single residue in the S2-S3 loop of CNG channels alters the gating properties and sensitivity to inhibitors., Crary JI., J Gen Physiol. December 1, 2000; 116 (6): 769-80.                  


Differential expression of two carbohydrate epitopes, CD15 and HNK-1, in developing vertebrate olfactory receptor neurones., Arnhold S., Eur J Morphol. April 1, 2001; 39 (2): 65-71.


Neuronal turnover in the Xenopus laevis olfactory epithelium during metamorphosis., Higgs DM., J Comp Neurol. April 23, 2001; 433 (1): 124-30.


Differential and overlapping expression patterns of X-dll3 and Pax-6 genes suggest distinct roles in olfactory system development of the African clawed frog Xenopus laevis., Franco MD., J Exp Biol. June 1, 2001; 204 (Pt 12): 2049-61.  


Cloning and characterization of an arginine vasotocin receptor from the euryhaline flounder Platichthys flesus., Warne JM., Gen Comp Endocrinol. June 1, 2001; 122 (3): 312-9.


Identification of a nonmammalian Golf subtype: functional role in olfactory signaling of airborne odorants in Xenopus laevis., Mezler M., J Comp Neurol. October 29, 2001; 439 (4): 400-10.      


cAMP-independent responses of olfactory neurons in Xenopus laevis tadpoles and their projection onto olfactory bulb neurons., Manzini I., J Physiol. December 1, 2002; 545 (2): 475-84.


Xath5 regulates neurogenesis in the Xenopus olfactory placode., Burns CJ., Dev Dyn. December 1, 2002; 225 (4): 536-43.        


Odorant responses of Xenopus laevis tadpole olfactory neurons: a comparison between preparations., Manzini I., J Neurosci Methods. December 15, 2002; 121 (2): 159-67.


Neuronal representation of odourants in the olfactory bulb of Xenopus laevis tadpoles., Czesnik D., Eur J Neurosci. January 1, 2003; 17 (1): 113-8.                    


Alpha-melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation., Kramer BM., J Comp Neurol. January 27, 2003; 456 (1): 73-83.                  


Evi3, a common retroviral integration site in murine B-cell lymphoma, encodes an EBFAZ-related Krüppel-like zinc finger protein., Warming S., Blood. March 1, 2003; 101 (5): 1934-40.

???pagination.result.page??? 1 2 3 ???pagination.result.next???