Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (141) Expression Attributions Wiki
XB-ANAT-3732

Papers associated with olfactory epithelium

Limit to papers also referencing gene:
Results 1 - 50 of 141 results

Page(s): 1 2 3 Next

Sort Newest To Oldest Sort Oldest To Newest

Distinct interhemispheric connectivity at the level of the olfactory bulb emerges during Xenopus laevis metamorphosis., Weiss L., Cell Tissue Res. December 1, 2021; 386 (3): 491-511.            


Axon terminals control endolysosome diffusion to support synaptic remodelling., Terni B., Life Sci Alliance. January 1, 2021; 4 (8):                   


Resolving different presynaptic activity patterns within single olfactory glomeruli of Xenopus laevis larvae., Topci R., Sci Rep. January 1, 2021; 11 (1): 14258.                              


Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons., Wang C., Pest Manag Sci. September 1, 2020; 76 (9): 3159-3167.          


Embryonic Epidermal Lectins in Three Amphibian Species, Rana ornativentris, Bufo japonicus formosus, and Cynops pyrrhogaster., Nagata S., Zoolog Sci. August 1, 2020; 37 (4): 338-345.            


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. January 1, 2020; 147 (21):                             


Chemical modification of proteins by insertion of synthetic peptides using tandem protein trans-splicing., Khoo KK., Nat Commun. January 1, 2020; 11 (1): 2284.            


Bcl11b controls odorant receptor class choice in mice., Enomoto T., Commun Biol. January 1, 2019; 2 296.                


Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles., Terni B., J Comp Neurol. December 1, 2017; 525 (17): 3769-3783.


Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt and FGF signaling., Watanabe T., Genesis. October 31, 2017; .


Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group., Jungblut LD., J Morphol. September 1, 2017; 278 (9): 1208-1219.


Coordinated shift of olfactory amino acid responses and V2R expression to an amphibian water nose during metamorphosis., Syed AS., Cell Mol Life Sci. January 1, 2017; 74 (9): 1711-1719.


Neuronal degeneration and regeneration induced by axotomy in the olfactory epithelium of Xenopus laevis., Cervino AS., Dev Neurobiol. January 1, 2017; 77 (11): 1308-1320.                    


Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit., Hawkins SJ., Front Cell Neurosci. January 1, 2017; 11 380.            


Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis., Dittrich K., J Comp Neurol. April 1, 2016; 524 (5): 986-98.            


Neural regeneration dynamics of Xenopus laevis olfactory epithelium after zinc sulfate-induced damage., Frontera JL., J Chem Neuroanat. January 1, 2016; 77 1-9.


Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis., Brinkmann A., J Vis Exp. January 1, 2016; (112):   


Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding., Bao G., Eur J Neurosci. December 1, 2015; 42 (11): 2985-95.                      


An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction., Hutch CR., Neuroscience. August 6, 2015; 300 539-53.


Integrating temperature with odor processing in the olfactory bulb., Kludt E., J Neurosci. May 20, 2015; 35 (20): 7892-902.


Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis., Frontera JL., Ann Anat. March 1, 2015; 198 41-8.


Dual processing of sulfated steroids in the olfactory system of an anuran amphibian., Sansone A., Front Cell Neurosci. January 1, 2015; 9 373.            


Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs., Nakada T., J Comp Neurol. October 15, 2014; 522 (15): 3501-19.


Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity., Li Z., PLoS Genet. September 1, 2014; 10 (9): e1004600.            


Fez family transcription factors: controlling neurogenesis and cell fate in the developing mammalian nervous system., Eckler MJ., Bioessays. August 1, 2014; 36 (8): 788-97.


Trpc2 is expressed in two olfactory subsystems, the main and the vomeronasal system of larval Xenopus laevis., Sansone A., J Exp Biol. July 1, 2014; 217 (Pt 13): 2235-8.    


Phylogenic studies on the olfactory system in vertebrates., Taniguchi K., J Vet Med Sci. June 1, 2014; 76 (6): 781-8.                


Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome., Karpinski BA., Dis Model Mech. February 1, 2014; 7 (2): 245-57.                


Purinergic receptor-induced Ca2+ signaling in the neuroepithelium of the vomeronasal organ of larval Xenopus laevis., Dittrich K., Purinergic Signal. January 1, 2014; 10 (2): 327-36.          


Phospholipase C and diacylglycerol mediate olfactory responses to amino acids in the main olfactory epithelium of an amphibian., Sansone A., PLoS One. January 1, 2014; 9 (1): e87721.          


The olfactory system as a model to study axonal growth patterns and morphology in vivo., Hassenklöver T., J Vis Exp. January 1, 2014; (92): e52143.  


Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene., Geng FS., Development. November 1, 2013; 140 (21): 4362-74.              


Ontogenesis of the extra-bulbar olfactory pathway in Xenopus laevis., Gaudin A., Anat Rec (Hoboken). September 1, 2013; 296 (9): 1462-76.


Exotic models may offer unique opportunities to decipher specific scientific question: the case of Xenopus olfactory system., Gascuel J., Anat Rec (Hoboken). September 1, 2013; 296 (9): 1453-61.    


Bimodal processing of olfactory information in an amphibian nose: odor responses segregate into a medial and a lateral stream., Gliem S., Cell Mol Life Sci. June 1, 2013; 70 (11): 1965-84.                


Ancestral amphibian v2rs are expressed in the main olfactory epithelium., Syed AS., Proc Natl Acad Sci U S A. May 7, 2013; 110 (19): 7714-9.      


The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis., Parlier D., Dev Biol. January 1, 2013; 373 (1): 39-52.                              


Human trace amine-associated receptor TAAR5 can be activated by trimethylamine., Wallrabenstein I., PLoS One. January 1, 2013; 8 (2): e54950.          


Xaml1/Runx1 is required for the specification of Rohon-Beard sensory neurons in Xenopus., Park BY., Dev Biol. February 1, 2012; 362 (1): 65-75.                


Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis., Amano T., PLoS One. January 1, 2012; 7 (4): e33922.            


Amino acid- vs. peptide-odorants: responses of individual olfactory receptor neurons in an aquatic species., Hassenklöver T., PLoS One. January 1, 2012; 7 (12): e53097.        


Origin and segregation of cranial placodes in Xenopus laevis., Pieper M., Dev Biol. December 15, 2011; 360 (2): 257-75.                        


Involvement of Gα(olf)-expressing neurons in the vomeronasal system of Bufo japonicus., Hagino-Yamagishi K., J Comp Neurol. November 1, 2011; 519 (16): 3189-201.


Distinct axonal projections from two types of olfactory receptor neurons in the middle chamber epithelium of Xenopus laevis., Nakamuta S., Cell Tissue Res. October 1, 2011; 346 (1): 27-33.


The styryl dye FM1-43 suppresses odorant responses in a subset of olfactory neurons by blocking cyclic nucleotide-gated (CNG) channels., Breunig E., J Biol Chem. August 12, 2011; 286 (32): 28041-8.        


V-ATPase-dependent ectodermal voltage and pH regionalization are required for craniofacial morphogenesis., Vandenberg LN., Dev Dyn. August 1, 2011; 240 (8): 1889-904.                        


The location of olfactory receptors within olfactory epithelium is independent of odorant volatility and solubility., Abaffy T., BMC Res Notes. May 6, 2011; 4 137.        


Developmental changes in lectin-binding patterns of three nasal sensory epithelia in Xenopus laevis., Endo D., Anat Rec (Hoboken). May 1, 2011; 294 (5): 839-46.


Cloning and characterization of GABAA α subunits and GABAB subunits in Xenopus laevis during development., Kaeser GE., Dev Dyn. April 1, 2011; 240 (4): 862-73.                                          


Characterization of a novel type I keratin gene and generation of transgenic lines with fluorescent reporter genes driven by its promoter/enhancer in Xenopus laevis., Suzuki KT., Dev Dyn. December 1, 2010; 239 (12): 3172-81.                  

Page(s): 1 2 3 Next