Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (116) Expression Attributions Wiki
XB-ANAT-3737

Papers associated with neuropil of the optic tectum (and tecta.2)

Limit to papers also referencing gene:
Show all neuropil of the optic tectum papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Epigenetic regulation of GABAergic differentiation in the developing brain., Gao J., Front Cell Neurosci. January 1, 2022; 16 988732.            


Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors., McKeown CR., Development. October 24, 2019; 146 (20):             


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH., Elife. February 7, 2018; 7                     


An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum., Hamodi AS., Elife. November 23, 2016; 5                   


HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum., Gao J., Front Cell Neurosci. May 6, 2016; 10 221.              


Subcellular Localization of Class I Histone Deacetylases in the Developing Xenopus tectum., Guo X., Front Cell Neurosci. September 23, 2015; 9 510.                  


HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum., Tao Y., PLoS One. March 16, 2015; 10 (3): e0120118.                


FMRP regulates neurogenesis in vivo in Xenopus laevis tadpoles., Faulkner RL., eNeuro. January 1, 2015; 2 (1): e0055.                


Clonal relationships impact neuronal tuning within a phylogenetically ancient vertebrate brain structure., Muldal AM., Curr Biol. August 18, 2014; 24 (16): 1929-33.        


Global hyper-synchronous spontaneous activity in the developing optic tectum., Imaizumi K., Sci Rep. January 1, 2013; 3 1552.            


Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis., Higenell V., Dev Neurobiol. April 1, 2012; 72 (4): 547-63.              


Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation., Rentería RC., J Neurosci. August 15, 1999; 19 (16): 7066-76.          


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.              


The ultrastructural organization of the isthmic nucleus in Xenopus., McCart R., Anat Embryol (Berl). January 1, 1988; 177 (4): 325-30.


Factors guiding regenerating retinotectal fibres in the frog Xenopus laevis., Fawcett JW., J Embryol Exp Morphol. December 1, 1985; 90 233-50.

???pagination.result.page??? 1