Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2127) Expression Attributions Wiki
XB-ANAT-3747

Papers associated with cytoplasm (and mt-tr)

Limit to papers also referencing gene:
Show all cytoplasm papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Pituitary cell translation and secretory capacities are enhanced cell autonomously by the transcription factor Creb3l2., Khetchoumian K., Nat Commun. September 3, 2019; 10 (1): 3960.                                  


Lariat intronic RNAs in the cytoplasm of vertebrate cells., Talhouarne GJS., Proc Natl Acad Sci U S A. August 21, 2018; 115 (34): E7970-E7977.                        


Studying nuclear functions of aminoacyl tRNA synthetases., Shi Y., Methods. January 15, 2017; 113 105-110.


A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning., Kırlı K., Elife. December 17, 2015; 4                     


Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes., Malik MQ., J Biol Chem. December 19, 2014; 289 (51): 35468-81.                


MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP., Truesdell SS., Sci Rep. January 1, 2012; 2 842.                


Cajal body surveillance of U snRNA export complex assembly., Suzuki T., J Cell Biol. August 23, 2010; 190 (4): 603-12.            


Visualizing protein interactions involved in the formation of the 42S RNP storage particle of Xenopus oocytes., Schneider H., Biol Cell. May 26, 2010; 102 (8): 469-78.


Nuclear localization of aminoacyl-tRNA synthetases using single-cell capillary electrophoresis laser-induced fluorescence analysis., Gunasekera N., Anal Chem. August 15, 2004; 76 (16): 4741-6.


VgRBP71 stimulates cleavage at a polyadenylation signal in Vg1 mRNA, resulting in the removal of a cis-acting element that represses translation., Kolev NG., Mol Cell. March 1, 2003; 11 (3): 745-55.              


Internal modification of U2 small nuclear (sn)RNA occurs in nucleoli of Xenopus oocytes., Yu YT., J Cell Biol. March 19, 2001; 152 (6): 1279-88.              


A Ran-independent pathway for export of spliced mRNA., Clouse KN., Nat Cell Biol. January 1, 2001; 3 (1): 97-9.


Construction of a ribozyme-expression system that effectively transports ribozymes to the cytoplasm., Sano M., Nucleic Acids Symp Ser. January 1, 2000; (44): 203-4.


CRM1-mediated recycling of snurportin 1 to the cytoplasm., Paraskeva E., J Cell Biol. April 19, 1999; 145 (2): 255-64.              


Coordination of tRNA nuclear export with processing of tRNA., Lipowsky G., RNA. April 1, 1999; 5 (4): 539-49.


The nucleoporin nup153 plays a critical role in multiple types of nuclear export., Ullman KS., Mol Biol Cell. March 1, 1999; 10 (3): 649-64.


Identification of a nuclear export receptor for tRNA., Arts GJ., Curr Biol. March 12, 1998; 8 (6): 305-14.


Identification of a tRNA-specific nuclear export receptor., Kutay U., Mol Cell. February 1, 1998; 1 (3): 359-69.


Structural requirements for enzymatic formation of threonylcarbamoyladenosine (t6A) in tRNA: an in vivo study with Xenopus laevis oocytes., Morin A., RNA. January 1, 1998; 4 (1): 24-37.


The simian retrovirus-1 constitutive transport element, unlike the HIV-1 RRE, uses factors required for cellular mRNA export., Saavedra C., Curr Biol. September 1, 1997; 7 (9): 619-28.


A novel class of RanGTP binding proteins., Görlich D., J Cell Biol. July 14, 1997; 138 (1): 65-80.                    


Visualizing nuclear export of different classes of RNA by electron microscopy., Panté N., RNA. May 1, 1997; 3 (5): 498-513.


A role for the M9 transport signal of hnRNP A1 in mRNA nuclear export., Izaurralde E., J Cell Biol. April 7, 1997; 137 (1): 27-35.            


Developmental expression of the inositol 1,4,5-trisphosphate receptor and structural changes in the endoplasmic reticulum during oogenesis and meiotic maturation of Xenopus laevis., Kume S., Dev Biol. February 15, 1997; 182 (2): 228-39.              


The vertebrate GLFG nucleoporin, Nup98, is an essential component of multiple RNA export pathways., Powers MA., J Cell Biol. January 27, 1997; 136 (2): 241-50.            


RNA transport to the vegetal cortex of Xenopus oocytes., Zhou Y., Dev Biol. October 10, 1996; 179 (1): 173-83.            


Androgen receptor mRNA expression in Xenopus laevis CNS: sexual dimorphism and regulation in laryngeal motor nucleus., Pérez J., J Neurobiol. August 1, 1996; 30 (4): 556-68.                


The interactions with Ro60 and La differentially affect nuclear export of hY1 RNA., Simons FH., RNA. March 1, 1996; 2 (3): 264-73.


Transcriptional hierarchy in Xenopus embryogenesis: HNF4 a maternal factor involved in the developmental activation of the gene encoding the tissue specific transcription factor HNF1 alpha (LFB1)., Holewa B., Mech Dev. January 1, 1996; 54 (1): 45-57.            


Anti-La monoclonal antibodies recognizing epitopes within the RNA-binding domain of the La protein show differential capacities to immunoprecipitate RNA-associated La protein., Pruijn GJ., Eur J Biochem. September 1, 1995; 232 (2): 611-9.


Nuclear retention of RNA as a mechanism for localization., Boelens WC., RNA. May 1, 1995; 1 (3): 273-83.


Base modification pattern at the wobble position of Xenopus selenocysteine tRNA(Sec)., Sturchler C., Nucleic Acids Res. April 25, 1994; 22 (8): 1354-8.


Nuclear export of different classes of RNA is mediated by specific factors., Jarmolowski A., J Cell Biol. March 1, 1994; 124 (5): 627-35.


Export of mRNA from microinjected nuclei of Xenopus laevis oocytes., Dargemont C., J Cell Biol. July 1, 1992; 118 (1): 1-9.


Control of 4-8S RNA transcription at the midblastula transition in Xenopus laevis embryos., Lund E., Genes Dev. June 1, 1992; 6 (6): 1097-106.


Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis., Kawahara A., Development. August 1, 1991; 112 (4): 933-43.            


Elongation factor 1 alpha (EF-1 alpha) is concentrated in the Balbiani body and accumulates coordinately with the ribosomes during oogenesis of Xenopus laevis., Viel A., Dev Biol. October 1, 1990; 141 (2): 270-8.          


Expression of intermediate filament proteins during development of Xenopus laevis. I. cDNA clones encoding different forms of vimentin., Herrmann H., Development. February 1, 1989; 105 (2): 279-98.                      


Translocation of RNA-coated gold particles through the nuclear pores of oocytes., Dworetzky SI., J Cell Biol. March 1, 1988; 106 (3): 575-84.


Enzymatic formation of queuosine and of glycosyl queuosine in yeast tRNAs microinjected into Xenopus laevis oocytes. The effect of the anticodon loop sequence., Haumont E., Eur J Biochem. October 1, 1987; 168 (1): 219-25.


Unique pathway of expression of an opal suppressor phosphoserine tRNA., Lee BJ., Proc Natl Acad Sci U S A. September 1, 1987; 84 (18): 6384-8.


Distribution and utilization of 5 S-RNA-binding proteins during the development of Xenopus oocytes., Johnson RM., Eur J Biochem. November 2, 1984; 144 (3): 503-8.


Enzymatic conversion of adenosine to inosine in the wobble position of yeast tRNAAsp: the dependence on the anticodon sequence., Haumont E., Nucleic Acids Res. March 26, 1984; 12 (6): 2705-15.


tRNA transport from the nucleus in a eukaryotic cell: carrier-mediated translocation process., Zasloff M., Proc Natl Acad Sci U S A. November 1, 1983; 80 (21): 6436-40.


Site-directed in vitro replacement of nucleosides in the anticodon loop of tRNA: application to the study of structural requirements for queuine insertase activity., Carbon P., EMBO J. January 1, 1983; 2 (7): 1093-7.


A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription., Newport J., Cell. October 1, 1982; 30 (3): 687-96.


A major developmental transition in early Xenopus embryos: I. characterization and timing of cellular changes at the midblastula stage., Newport J., Cell. October 1, 1982; 30 (3): 675-86.                


Intracellular transport of microinjected 5S and small nuclear RNAs., De Robertis EM., Nature. February 18, 1982; 295 (5850): 572-7.


Transcription of 5 S RNA genes in vitro is feedback-inhibited by HeLa 5 S RNA., Gruissem W., J Biol Chem. February 10, 1982; 257 (3): 1468-72.


Differential effect of spermine on nuclear and cytoplasmic transfer RNA methyl transferases from Xenopus laevis Oocytes., Solari A., Arch Biol Med Exp. November 1, 1980; 13 (2): 287-93.

???pagination.result.page??? 1 2 ???pagination.result.next???