Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (30) Expression Attributions Wiki
XB-ANAT-3918

Papers associated with descending interneuron

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

From tadpole to adult frog locomotion., Sillar KT., Curr Opin Neurobiol. October 1, 2023; 82 102753.      


Mechanisms Underlying the Recruitment of Inhibitory Interneurons in Fictive Swimming in Developing Xenopus laevis Tadpoles., Ferrario A., J Neurosci. February 22, 2023; 43 (8): 1387-1404.                            


Stimulation of Single, Possible CHX10 Hindbrain Neurons Turns Swimming On and Off in Young Xenopus Tadpoles., Li WC., Front Cell Neurosci. January 1, 2019; 13 47.            


Control of Xenopus Tadpole Locomotion via Selective Expression of Ih in Excitatory Interneurons., Picton LD., Curr Biol. December 17, 2018; 28 (24): 3911-3923.e2.              


Bifurcations of Limit Cycles in a Reduced Model of the Xenopus Tadpole Central Pattern Generator., Ferrario A., J Math Neurosci. July 18, 2018; 8 (1): 10.                        


Structural and functional properties of a probabilistic model of neuronal connectivity in a simple locomotor network., Ferrario A., Elife. March 28, 2018; 7                   


To swim or not to swim: A population-level model of Xenopus tadpole decision making and locomotor behaviour., Borisyuk R., Biosystems. November 1, 2017; 161 3-14.                        


Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord., Davis O., Sci Rep. October 19, 2017; 7 (1): 13551.                          


The modulation of two motor behaviors by persistent sodium currents in Xenopus laevis tadpoles., Svensson E., J Neurophysiol. July 1, 2017; 118 (1): 121-130.        


Mechanosensory Stimulation Evokes Acute Concussion-Like Behavior by Activating GIRKs Coupled to Muscarinic Receptors in a Simple Vertebrate., Li WC., eNeuro. January 1, 2017; 4 (2):                   


Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity., Hull MJ., PLoS Comput Biol. January 29, 2016; 12 (1): e1004702.              


Mechanisms underlying the activity-dependent regulation of locomotor network performance by the Na+ pump., Zhang HY., Sci Rep. November 6, 2015; 5 16188.                  


Sensory initiation of a co-ordinated motor response: synaptic excitation underlying simple decision-making., Buhl E., J Physiol. October 1, 2015; 593 (19): 4423-37.                


Selective Gating of Neuronal Activity by Intrinsic Properties in Distinct Motor Rhythms., Li WC., J Neurosci. July 8, 2015; 35 (27): 9799-810.


Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity., Hull MJ., PLoS Comput Biol. May 8, 2015; 11 (5): e1004240.                  


The generation of antiphase oscillations and synchrony by a rebound-based vertebrate central pattern generator., Li WC., J Neurosci. April 23, 2014; 34 (17): 6065-77.


Fast silencing reveals a lost role for reciprocal inhibition in locomotion., Moult PR., Neuron. January 9, 2013; 77 (1): 129-40.                


The role of a trigeminal sensory nucleus in the initiation of locomotion., Buhl E., J Physiol. May 15, 2012; 590 (10): 2453-69.


The control of locomotor frequency by excitation and inhibition., Li WC., J Neurosci. May 2, 2012; 32 (18): 6220-30.


A functional scaffold of CNS neurons for the vertebrates: the developing Xenopus laevis spinal cord., Roberts A., Dev Neurobiol. April 1, 2012; 72 (4): 575-84.        


Generation of locomotion rhythms without inhibition in vertebrates: the search for pacemaker neurons., Li WC., Integr Comp Biol. December 1, 2011; 51 (6): 879-89.


Modeling the connectome of a simple spinal cord., Borisyuk R., Front Neuroinform. September 23, 2011; 5 20.                  


Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors., Li WC., J Neurosci. December 8, 2010; 30 (49): 16609-20.


How neurons generate behavior in a hatchling amphibian tadpole: an outline., Roberts A., Front Behav Neurosci. June 28, 2010; 4 16.            


Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles., Berkowitz A., Front Behav Neurosci. June 28, 2010; 4 36.                    


Helical motion of an S4 voltage sensor revealed by gating pore currents., Catterall WA., Channels (Austin). January 1, 2010; 4 (2): 75-7.


Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control., Soffe SR., J Physiol. October 15, 2009; 587 (Pt 20): 4829-44.                


Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles., Li WC., J Physiol. April 15, 2009; 587 (Pt 8): 1677-93.                    


Primitive roles for inhibitory interneurons in developing frog spinal cord., Li WC., J Neurosci. June 23, 2004; 24 (25): 5840-8.                


Erratic deposition of agrin during the formation of Xenopus neuromuscular junctions in culture., Anderson MJ., Dev Biol. July 1, 1995; 170 (1): 1-20.                      

???pagination.result.page??? 1