Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1285) Expression Attributions Wiki
XB-ANAT-480

Papers associated with blastomere (and gsk3b)

Limit to papers also referencing gene:
Show all blastomere papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

A catenin of the plakophilin-subfamily, Pkp3, responds to canonical-Wnt pathway components and signals., Hong JY., Biochem Biophys Res Commun. July 23, 2021; 563 31-39.        


GSK3 Inhibits Macropinocytosis and Lysosomal Activity through the Wnt Destruction Complex Machinery., Albrecht LV., Cell Rep. July 28, 2020; 32 (4): 107973.                                      


PAWS1 controls Wnt signalling through association with casein kinase 1α., Bozatzi P., EMBO Rep. April 1, 2018; 19 (4):                             


RAPGEF5 Regulates Nuclear Translocation of β-Catenin., Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.                                                


The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus., Zhu X., Mech Dev. October 1, 2017; 147 28-36.              


Lineage commitment of embryonic cells involves MEK1-dependent clearance of pluripotency regulator Ventx2., Scerbo P., Elife. June 27, 2017; 6                               


Gtpbp2 is a positive regulator of Wnt signaling and maintains low levels of the Wnt negative regulator Axin., Gillis WQ., Cell Commun Signal. August 2, 2016; 14 (1): 15.              


GSK3 and Polo-like kinase regulate ADAM13 function during cranial neural crest cell migration., Abbruzzese G., Mol Biol Cell. December 15, 2014; 25 (25): 4072-82.                                    


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


Single blastomere expression profiling of Xenopus laevis embryos of 8 to 32-cells reveals developmental asymmetry., Flachsova M., Sci Rep. January 1, 2013; 3 2278.      


Conservation and evolutionary divergence in the activity of receptor-regulated smads., Sorrentino GM., Evodevo. October 1, 2012; 3 (1): 22.              


A novel mechanism for the transcriptional regulation of Wnt signaling in development., Vacik T., Genes Dev. September 1, 2011; 25 (17): 1783-95.      


Notch destabilises maternal beta-catenin and restricts dorsal-anterior development in Xenopus., Acosta H., Development. June 1, 2011; 138 (12): 2567-79.                          


Mad is required for wingless signaling in wing development and segment patterning in Drosophila., Eivers E., PLoS One. August 6, 2009; 4 (8): e6543.                    


LRP6 transduces a canonical Wnt signal independently of Axin degradation by inhibiting GSK3's phosphorylation of beta-catenin., Cselenyi CS., Proc Natl Acad Sci U S A. June 10, 2008; 105 (23): 8032-7.        


Unexpected activities of Smad7 in Xenopus mesodermal and neural induction., de Almeida I., Mech Dev. January 1, 2008; 125 (5-6): 421-31.              


Shisa2 promotes the maturation of somitic precursors and transition to the segmental fate in Xenopus embryos., Nagano T., Development. December 1, 2006; 133 (23): 4643-54.                  


Jun NH2-terminal kinase (JNK) prevents nuclear beta-catenin accumulation and regulates axis formation in Xenopus embryos., Liao G., Proc Natl Acad Sci U S A. October 31, 2006; 103 (44): 16313-8.                    


Msx1 and Pax3 cooperate to mediate FGF8 and WNT signals during Xenopus neural crest induction., Monsoro-Burq AH., Dev Cell. February 1, 2005; 8 (2): 167-78.            


Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex., Foley AC., Genes Dev. February 1, 2005; 19 (3): 387-96.            


Xenopus XsalF: anterior neuroectodermal specification by attenuating cellular responsiveness to Wnt signaling., Onai T., Dev Cell. July 1, 2004; 7 (1): 95-106.            


Sox10 regulates the development of neural crest-derived melanocytes in Xenopus., Aoki Y., Dev Biol. July 1, 2003; 259 (1): 19-33.          


Neural crest induction by paraxial mesoderm in Xenopus embryos requires FGF signals., Monsoro-Burq AH., Development. July 1, 2003; 130 (14): 3111-24.                


Physiological regulation of [beta]-catenin stability by Tcf3 and CK1epsilon., Lee E, Lee E., J Cell Biol. September 3, 2001; 154 (5): 983-93.                


Cloning, expression and nuclear localization of human NPM3, a member of the nucleophosmin/nucleoplasmin family of nuclear chaperones., Shackleford GM., BMC Genomics. January 1, 2001; 2 8.            


Axis determination in Xenopus involves biochemical interactions of axin, glycogen synthase kinase 3 and beta-catenin., Itoh K., Curr Biol. May 7, 1998; 8 (10): 591-4.      


Analysis of Dishevelled signalling pathways during Xenopus development., Sokol SY., Curr Biol. November 1, 1996; 6 (11): 1456-67.                  


Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase., Itoh K., Development. December 1, 1995; 121 (12): 3979-88.              


Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos., Dominguez I., Proc Natl Acad Sci U S A. August 29, 1995; 92 (18): 8498-502.            


Regulation of Spemann organizer formation by the intracellular kinase Xgsk-3., Pierce SB., Development. March 1, 1995; 121 (3): 755-65.              

???pagination.result.page??? 1