Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (688) Expression Attributions Wiki
XB-ANAT-481

Papers associated with fibroblast (and pou5f3.1)

Limit to papers also referencing gene:
Show all fibroblast papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Inhibition of FGF signaling accelerates neural crest cell differentiation of human pluripotent stem cells., Jaroonwitchawan T., Biochem Biophys Res Commun. December 2, 2016; 481 (1-2): 176-181.


Maintenance of multipotency in human dermal fibroblasts treated with Xenopus laevis egg extract requires exogenous fibroblast growth factor-2., Kole D., Cell Reprogram. February 1, 2014; 16 (1): 18-28.


MRAS GTPase is a novel stemness marker that impacts mouse embryonic stem cell plasticity and Xenopus embryonic cell fate., Mathieu ME., Development. August 1, 2013; 140 (16): 3311-22.              


Multiple coagulation factor deficiency protein 2 contains the ability to support stem cell self-renewal., Liu H., FASEB J. August 1, 2013; 27 (8): 3298-305.


The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation., Schmidt R., Genome Biol. October 22, 2012; 13 (10): 251.      


Transcriptional activation by Oct4 is sufficient for the maintenance and induction of pluripotency., Hammachi F., Cell Rep. February 23, 2012; 1 (2): 99-109.                          


Interaction of Sox1, Sox2, Sox3 and Oct4 during primary neurogenesis., Archer TC., Dev Biol. February 15, 2011; 350 (2): 429-40.        


Neuronatin promotes neural lineage in ESCs via Ca(2+) signaling., Lin HH., Stem Cells. November 1, 2010; 28 (11): 1950-60.              


Reprogramming events of mammalian somatic cells induced by Xenopus laevis egg extracts., Miyamoto K., Mol Reprod Dev. October 1, 2007; 74 (10): 1268-77.


Xenopus laevis POU91 protein, an Oct3/4 homologue, regulates competence transitions from mesoderm to neural cell fates., Snir M., EMBO J. August 9, 2006; 25 (15): 3664-74.


A POU protein regulates mesodermal competence to FGF in Xenopus., Henig C., Mech Dev. February 1, 1998; 71 (1-2): 131-42.

???pagination.result.page??? 1