Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (36) Expression Attributions Wiki
XB-ANAT-486

Papers associated with Rohon-Beard neuron

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Xenopus embryos show a compensatory response following perturbation of the Notch signaling pathway., Solini GE., Dev Biol. April 15, 2020; 460 (2): 99-107.        


The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis., Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.                      


Muscarinic modulation of the Xenopus laevis tadpole spinal mechanosensory pathway., Porter NJ., Brain Res Bull. May 1, 2018; 139 278-284.


Studying the role of axon fasciculation during development in a computational model of the Xenopus tadpole spinal cord., Davis O., Sci Rep. October 19, 2017; 7 (1): 13551.                          


N1-Src Kinase Is Required for Primary Neurogenesis in Xenopus tropicalis., Lewis PA., J Neurosci. August 30, 2017; 37 (35): 8477-8485.          


Nodal/Activin Pathway is a Conserved Neural Induction Signal in Chordates., Le Petillon Y., Nat Ecol Evol. August 1, 2017; 1 (8): 1192-1200.                                


An oncologist׳s friend: How Xenopus contributes to cancer research., Hardwick LJ., Dev Biol. December 15, 2015; 408 (2): 180-7.  


Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins., Hardwick LJ., Neural Dev. June 18, 2015; 10 15.                  


aPKC phosphorylates p27Xic1, providing a mechanistic link between apicobasal polarity and cell-cycle control., Sabherwal N., Dev Cell. December 8, 2014; 31 (5): 559-71.                          


Phosphorylation in intrinsically disordered regions regulates the activity of Neurogenin2., McDowell GS., BMC Biochem. November 6, 2014; 15 24.        


PTK7 modulates Wnt signaling activity via LRP6., Bin-Nun N., Development. January 1, 2014; 141 (2): 410-21.              


ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis., Janesick A., Development. August 1, 2013; 140 (15): 3095-106.                                                              


Complex regulation controls Neurogenin3 proteolysis., Roark R., Biol Open. December 15, 2012; 1 (12): 1264-72.              


Post-translational modification of Ngn2 differentially affects transcription of distinct targets to regulate the balance between progenitor maintenance and differentiation., Hindley C., Development. May 1, 2012; 139 (10): 1718-23.      


The homeobox leucine zipper gene Homez plays a role in Xenopus laevis neurogenesis., Ghimouz R., Biochem Biophys Res Commun. November 11, 2011; 415 (1): 11-6.            


Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis., Ali F., Development. October 1, 2011; 138 (19): 4267-77.      


Xenopus Dbx2 is involved in primary neurogenesis and early neural plate patterning., Ma P., Biochem Biophys Res Commun. August 19, 2011; 412 (1): 170-4.            


EBF factors drive expression of multiple classes of target genes governing neuronal development., Green YS., Neural Dev. April 30, 2011; 6 19.                                                          


The E3 ubiquitin ligase skp2 regulates neural differentiation independent from the cell cycle., Boix-Perales H., Neural Dev. March 15, 2007; 2 27.                      


The expression and alternative splicing of alpha-neurexins during Xenopus development., Zeng Z., Int J Dev Biol. January 1, 2006; 50 (1): 39-46.                  


Expression of synaptic vesicle two-related protein SVOP in the developing nervous system of Xenopus laevis., Logan MA., Dev Dyn. November 1, 2005; 234 (3): 802-7.      


Identification of shared transcriptional targets for the proneural bHLH factors Xath5 and XNeuroD., Logan MA., Dev Biol. September 15, 2005; 285 (2): 570-83.          


A mutant form of MeCP2 protein associated with human Rett syndrome cannot be displaced from methylated DNA by notch in Xenopus embryos., Stancheva I., Mol Cell. August 1, 2003; 12 (2): 425-35.                          


XETOR regulates the size of the proneural domain during primary neurogenesis in Xenopus laevis., Cao Y., Mech Dev. November 1, 2002; 119 (1): 35-44.                      


Distinct patterns of downstream target activation are specified by the helix-loop-helix domain of proneural basic helix-loop-helix transcription factors., Talikka M., Dev Biol. July 1, 2002; 247 (1): 137-48.          


The COE--Collier/Olf1/EBF--transcription factors: structural conservation and diversity of developmental functions., Dubois L., Mech Dev. October 1, 2001; 108 (1-2): 3-12.


Xenopus Bcl-X(L) selectively protects Rohon-Beard neurons from metamorphic degeneration., Coen L., Proc Natl Acad Sci U S A. July 3, 2001; 98 (14): 7869-74.


Xebf3 is a regulator of neuronal differentiation during primary neurogenesis in Xenopus., Pozzoli O., Dev Biol. May 15, 2001; 233 (2): 495-512.            


The homeodomain-containing gene Xdbx inhibits neuronal differentiation in the developing embryo., Gershon AA., Development. July 1, 2000; 127 (13): 2945-54.                  


Dll4, a novel Notch ligand expressed in arterial endothelium., Shutter JR., Genes Dev. June 1, 2000; 14 (11): 1313-8.  


Xenopus embryonic spinal neurons express potassium channel Kvbeta subunits., Lazaroff MA., J Neurosci. December 15, 1999; 19 (24): 10706-15.                    


The pattern of sensory discharge can determine the motor response in young Xenopus tadpoles., Soffe SR., J Comp Physiol A. June 1, 1997; 180 (6): 711-5.


Sensitivity of proneural genes to lateral inhibition affects the pattern of primary neurons in Xenopus embryos., Chitnis A., Development. July 1, 1996; 122 (7): 2295-301.      


Quantitative lineage analysis of the origin of frog primary motor and sensory neurons from cleavage stage blastomeres., Moody SA., J Neurosci. August 1, 1989; 9 (8): 2919-30.


Rohon-Beard neuron origin from blastomeres of the 16-cell frog embryo., Jacobson M., J Neurosci. August 1, 1981; 1 (8): 918-22.


Rohon-beard cells and other large neurons in Xenopus embryos originate during gastrulation., Lamborghini JE., J Comp Neurol. January 15, 1980; 189 (2): 323-33.

???pagination.result.page??? 1