Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1946) Expression Attributions Wiki
XB-ANAT-487

Papers associated with neuron (and tecta.2)

Limit to papers also referencing gene:
Show all neuron papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Precisely controlled visual stimulation to study experience-dependent neural plasticity in Xenopus tadpoles., Hiramoto M., STAR Protoc. January 8, 2021; 2 (1): 100252.                


N-terminal and central domains of APC function to regulate branch number, length and angle in developing optic axonal arbors in vivo., Jin T., Brain Res. October 15, 2018; 1697 34-44.        


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH., Elife. February 7, 2018; 7                     


Serotonergic stimulation induces nerve growth and promotes visual learning via posterior eye grafts in a vertebrate model of induced sensory plasticity., Blackiston DJ., NPJ Regen Med. January 1, 2017; 2 8.            


An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum., Hamodi AS., Elife. November 23, 2016; 5                   


An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system., Bestman JE., Dev Biol. December 15, 2015; 408 (2): 269-91.                    


HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum., Tao Y., PLoS One. March 16, 2015; 10 (3): e0120118.                


A novel method for inducing nerve growth via modulation of host resting potential: gap junction-mediated and serotonergic signaling mechanisms., Blackiston DJ., Neurotherapeutics. January 1, 2015; 12 (1): 170-84.            


FMRP regulates neurogenesis in vivo in Xenopus laevis tadpoles., Faulkner RL., eNeuro. January 1, 2015; 2 (1): e0055.                


Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis., McKeown CR., J Comp Neurol. July 1, 2013; 521 (10): 2262-78.              


Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis., Higenell V., Dev Neurobiol. April 1, 2012; 72 (4): 547-63.              


Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo., Wizenmann A., Neuron. November 12, 2009; 64 (3): 355-366.


MAP2 phosphorylation and visual plasticity in Xenopus., Guo Y., Dev Biol. June 29, 2001; 905 (1-2): 134-41.


Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation., Rentería RC., J Neurosci. August 15, 1999; 19 (16): 7066-76.          


Suppression of sprouting: An early function of NMDA receptors in the absence of AMPA/kainate receptor activity., Lin SY., J Neurosci. May 15, 1998; 18 (10): 3725-37.


Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration., Zhao Y., J Neurobiol. November 20, 1997; 33 (6): 811-24.                  


Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation., Hirsch N., Invest Ophthalmol Vis Sci. April 1, 1997; 38 (5): 960-9.


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.              


Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission., O'Rourke NA., Neuron. April 1, 1994; 12 (4): 921-34.


Ultrastructure of the crossed isthmotectal projection in Xenopus frogs., Udin SB., J Comp Neurol. February 8, 1990; 292 (2): 246-54.


The directed growth of retinal axons towards surgically transposed tecta in Xenopus; an examination of homing behaviour by retinal ganglion cell axons., Taylor JS., Development. January 1, 1990; 108 (1): 147-58.


The ultrastructural organization of the isthmic nucleus in Xenopus., McCart R., Anat Embryol (Berl). January 1, 1988; 177 (4): 325-30.


Optic fibers follow aberrant pathways from rotated eyes in Xenopus laevis., Grant P., J Comp Neurol. August 15, 1986; 250 (3): 364-76.


Alteration of the retinotectal map in Xenopus by antibodies to neural cell adhesion molecules., Fraser SE., Proc Natl Acad Sci U S A. July 1, 1984; 81 (13): 4222-6.


Abnormal visual input leads to development of abnormal axon trajectories in frogs., Udin SB., Nature. January 27, 1983; 301 (5898): 336-8.

???pagination.result.page??? 1