Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1946) Expression Attributions Wiki
XB-ANAT-487

Papers associated with neuron (and pc.1)

Limit to papers also referencing gene:
Show all neuron papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Human amniotic fluid contaminants alter thyroid hormone signalling and early brain development in Xenopus embryos., Fini JB., Sci Rep. March 7, 2017; 7 43786.        


GABA expression and regulation by sensory experience in the developing visual system., Miraucourt LS., PLoS One. January 1, 2012; 7 (1): e29086.            


Expression of odorant receptor family, type 2 OR in the aquatic olfactory cavity of amphibian frog Xenopus tropicalis., Amano T., PLoS One. January 1, 2012; 7 (4): e33922.            


WNK2 kinase is a novel regulator of essential neuronal cation-chloride cotransporters., Rinehart J., J Biol Chem. August 26, 2011; 286 (34): 30171-80.              


Purinergic receptor-mediated Ca signaling in the olfactory bulb and the neurogenic area of the lateral ventricles., Hassenklöver T., Purinergic Signal. December 1, 2010; 6 (4): 429-45.                


The G-protein-coupled receptor, GPR84, is important for eye development in Xenopus laevis., Perry KJ., Dev Dyn. November 1, 2010; 239 (11): 3024-37.                


Transplantation of Xenopus laevis ears reveals the ability to form afferent and efferent connections with the spinal cord., Elliott KL., Int J Dev Biol. January 1, 2010; 54 (10): 1443-51.          


Generation of functional eyes from pluripotent cells., Viczian AS., PLoS Biol. August 1, 2009; 7 (8): e1000174.                                


Hemichannel-mediated and pH-based feedback from horizontal cells to cones in the vertebrate retina., Fahrenfort I., PLoS One. June 30, 2009; 4 (6): e6090.                        


Cytoplasmic polyadenylation and cytoplasmic polyadenylation element-dependent mRNA regulation are involved in Xenopus retinal axon development., Lin AC., Neural Dev. March 2, 2009; 4 8.              


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. June 23, 2008; 5 9.              


A specific box switches the cell fate determining activity of XOTX2 and XOTX5b in the Xenopus retina., Onorati M., Neural Dev. June 27, 2007; 2 12.            


Electroporation-based methods for in vivo, whole mount and primary culture analysis of zebrafish brain development., Hendricks M., Neural Dev. March 15, 2007; 2 6.        


Neogenin interacts with RGMa and netrin-1 to guide axons within the embryonic vertebrate forebrain., Wilson NH., Dev Biol. August 15, 2006; 296 (2): 485-98.                      


A key role for the HLH transcription factor EBF2COE2,O/E-3 in Purkinje neuron migration and cerebellar cortical topography., Croci L., Development. July 1, 2006; 133 (14): 2719-29.


Multiple signaling pathways regulate FGF-2-induced retinal ganglion cell neurite extension and growth cone guidance., Webber CA., Mol Cell Neurosci. September 1, 2005; 30 (1): 37-47.


Classes and narrowing selectivity of olfactory receptor neurons of Xenopus laevis tadpoles., Manzini I., J Gen Physiol. February 1, 2004; 123 (2): 99-107.              


Conservation of the heterochronic regulator Lin-28, its developmental expression and microRNA complementary sites., Moss EG., Dev Biol. June 15, 2003; 258 (2): 432-42.        


The role of the brain in metamorphosis of the olfactory epithelium in the frog, Xenopus laevis., Higgs DM., Brain Res Dev Brain Res. December 10, 1999; 118 (1-2): 185-95.


Metamorphic remodeling of the primary olfactory projection in Xenopus: developmental independence of projections from olfactory neuron subclasses., Reiss JO., J Neurobiol. February 1, 1997; 32 (2): 213-22.


Differential signal transduction by five splice variants of the PACAP receptor., Spengler D., Nature. September 9, 1993; 365 (6442): 170-5.

???pagination.result.page??? 1