Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (12843) Expression Attributions Wiki
XB-ANAT-488

Papers associated with head (and ctnnb1)

Limit to papers also referencing gene:
Show all head papers
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

R-Spondin 2 governs Xenopus left-right body axis formation by establishing an FGF signaling gradient., Lee H, Lee H., Nat Commun. February 2, 2024; 15 (1): 1003.                                                                  


TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


Mink1 regulates spemann organizer cell fate in the xenopus gastrula via Hmga2., Colleluori V., Dev Biol. March 1, 2023; 495 42-53.                            


A Mixture of Chemicals Found in Human Amniotic Fluid Disrupts Brain Gene Expression and Behavior in Xenopus laevis., Leemans M., Int J Mol Sci. January 30, 2023; 24 (3):               


Transmembrane H+ fluxes and the regulation of neural induction in Xenopus laevis., Leung HC., Zygote. April 1, 2022; 30 (2): 267-278.        


A revised mechanism of action of hyperaldosteronism-linked mutations in cytosolic domains of GIRK4 (KCNJ5)., Shalomov B., J Physiol. March 1, 2022; 600 (6): 1419-1437.


The role of Xenopus developmental biology in unraveling Wnt signalling and antero-posterior axis formation., Niehrs C., Dev Biol. February 1, 2022; 482 1-6.


Cannabinoid Receptor Type 1 regulates growth cone filopodia and axon dispersion in the optic tract of Xenopus laevis tadpoles., Elul T., Eur J Neurosci. February 1, 2022; 55 (4): 989-1001.


Rab7 is required for mesoderm patterning and gastrulation in Xenopus., Kreis J., Biol Open. July 15, 2021; 10 (7):                                           


Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage., Castro Colabianchi AM., Biol Open. February 25, 2021; 10 (2):                 


Establishing embryonic territories in the context of Wnt signaling., Velloso I., Int J Dev Biol. January 1, 2021; 65 (4-5-6): 227-233.      


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M., Elife. September 14, 2020; 9                                                                                           


GSK3 Inhibits Macropinocytosis and Lysosomal Activity through the Wnt Destruction Complex Machinery., Albrecht LV., Cell Rep. July 28, 2020; 32 (4): 107973.                                      


The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer., Chang LS., Elife. January 14, 2020; 9                                                                                               


The Chalcone Lonchocarpin Inhibits Wnt/β-Catenin Signaling and Suppresses Colorectal Cancer Proliferation., Predes D., Cancers (Basel). December 7, 2019; 11 (12):             


ΔN-Tp63 Mediates Wnt/β-Catenin-Induced Inhibition of Differentiation in Basal Stem Cells of Mucociliary Epithelia., Haas M., Cell Rep. September 24, 2019; 28 (13): 3338-3352.e6.                              


Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals., Gentsch GE., Nat Commun. September 19, 2019; 10 (1): 4269.                                        


Jmjd6a regulates GSK3β RNA splicing in Xenopus laevis eye development., Shin JY., PLoS One. July 30, 2019; 14 (7): e0219800.                      


Molecular markers for corneal epithelial cells in larval vs. adult Xenopus frogs., Sonam S., Exp Eye Res. July 1, 2019; 184 107-125.                        


Desmoplakin is required for epidermal integrity and morphogenesis in the Xenopus laevis embryo., Bharathan NK., Dev Biol. June 15, 2019; 450 (2): 115-131.                            


Barhl2 maintains T cell factors as repressors and thereby switches off the Wnt/β-Catenin response driving Spemann organizer formation., Sena E., Development. May 22, 2019; 146 (10):                                             


The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis., Guo Y., Dev Biol. May 1, 2019; 449 (1): 1-13.                                  


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                                


Characterization of Pax3 and Sox10 transgenic Xenopus laevis embryos as tools to study neural crest development., Alkobtawi M., Dev Biol. December 1, 2018; 444 Suppl 1 S202-S208.            


Maternal Huluwa dictates the embryonic body axis through β-catenin in vertebrates., Yan L., Science. November 23, 2018; 362 (6417):


N-terminal and central domains of APC function to regulate branch number, length and angle in developing optic axonal arbors in vivo., Jin T., Brain Res. October 15, 2018; 1697 34-44.        


The b-HLH transcription factor Hes3 participates in neural plate border formation by interfering with Wnt/β-catenin signaling., Hong CS., Dev Biol. October 1, 2018; 442 (1): 162-172.                


Bighead is a Wnt antagonist secreted by the Xenopus Spemann organizer that promotes Lrp6 endocytosis., Ding Y., Proc Natl Acad Sci U S A. September 25, 2018; 115 (39): E9135-E9144.                    


Dkk2 promotes neural crest specification by activating Wnt/β-catenin signaling in a GSK3β independent manner., Devotta A., Elife. July 23, 2018; 7                             


Embryonic regeneration by relocalization of the Spemann organizer during twinning in Xenopus., Moriyama Y., Proc Natl Acad Sci U S A. May 22, 2018; 115 (21): E4815-E4822.              


Head formation requires Dishevelled degradation that is mediated by March2 in concert with Dapper1., Lee H, Lee H., Development. April 10, 2018; 145 (7):               


Retinoic acid promotes stem cell differentiation and embryonic development by transcriptionally activating CFTR., Li X., Biochim Biophys Acta Mol Cell Res. April 1, 2018; 1865 (4): 605-615.


Coordinated regulation of the dorsal-ventral and anterior-posterior patterning of Xenopus embryos by the BTB/POZ zinc finger protein Zbtb14., Takebayashi-Suzuki K., Dev Growth Differ. April 1, 2018; 60 (3): 158-173.          


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH., Elife. February 7, 2018; 7                     


Timing is everything: Reiterative Wnt, BMP and RA signaling regulate developmental competence during endoderm organogenesis., Rankin SA, Rankin SA., Dev Biol. February 1, 2018; 434 (1): 121-132.          


Neural crest development in Xenopus requires Protocadherin 7 at the lateral neural crest border., Bradley RS., Mech Dev. February 1, 2018; 149 41-52.                


RAPGEF5 Regulates Nuclear Translocation of β-Catenin., Griffin JN., Dev Cell. January 22, 2018; 44 (2): 248-260.e4.                                                


PFKFB4 control of AKT signaling is essential for premigratory and migratory neural crest formation., Figueiredo AL., Development. November 15, 2017; 144 (22): 4183-4194.                                


Angiopoietin-like 4 Is a Wnt Signaling Antagonist that Promotes LRP6 Turnover., Kirsch N., Dev Cell. October 9, 2017; 43 (1): 71-82.e6.                                


The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus., Zhu X., Mech Dev. October 1, 2017; 147 28-36.              


Similarity in gene-regulatory networks suggests that cancer cells share characteristics of embryonic neural cells., Zhang Z., J Biol Chem. August 4, 2017; 292 (31): 12842-12859.        


TSPAN12 Is a Norrin Co-receptor that Amplifies Frizzled4 Ligand Selectivity and Signaling., Lai MB., Cell Rep. June 27, 2017; 19 (13): 2809-2822.  


Genome-wide analysis of dorsal and ventral transcriptomes of the Xenopus laevis gastrula., Ding Y., Dev Biol. June 15, 2017; 426 (2): 176-187.                                  


High variability of expression profiles of homeologous genes for Wnt, Hh, Notch, and Hippo signaling pathways in Xenopus laevis., Michiue T., Dev Biol. June 15, 2017; 426 (2): 270-290.                  


The phosphatase Pgam5 antagonizes Wnt/β-Catenin signaling in embryonic anterior-posterior axis patterning., Rauschenberger V., Development. June 15, 2017; 144 (12): 2234-2247.                                      


Brg1 chromatin remodeling ATPase balances germ layer patterning by amplifying the transcriptional burst at midblastula transition., Wagner G., PLoS Genet. May 12, 2017; 13 (5): e1006757.                                    


Spatiotemporally Controlled Mechanical Cues Drive Progenitor Mesenchymal-to-Epithelial Transition Enabling Proper Heart Formation and Function., Jackson TR., Curr Biol. May 8, 2017; 27 (9): 1326-1335.                            


Spemann organizer transcriptome induction by early beta-catenin, Wnt, Nodal, and Siamois signals in Xenopus laevis., Ding Y., Proc Natl Acad Sci U S A. April 11, 2017; 114 (15): E3081-E3090.                        


The CapZ interacting protein Rcsd1 is required for cardiogenesis downstream of Wnt11a in Xenopus laevis., Hempel A., Dev Biol. April 1, 2017; 424 (1): 28-39.                                  


An Epha4/Sipa1l3/Wnt pathway regulates eye development and lens maturation., Rothe M., Development. January 15, 2017; 144 (2): 321-333.                              

???pagination.result.page??? 1 2 3 4 5 ???pagination.result.next???