Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (1442) Attributions Wiki
XB-STAGE-5

Papers associated with blastula stage

Limit to papers also referencing gene:
Results 1 - 50 of 1442 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

Nascent transcriptome reveals orchestration of zygotic genome activation in early embryogenesis., Chen H, Good MC., Curr Biol. August 22, 2022;                         


Normal Table of Xenopus development: a new graphical resource., Zahn N, James-Zorn C, Ponferrada VG, Adams DS, Grzymkowski J, Buchholz DR, Nascone-Yoder NM, Horb M, Moody SA, Vize PD, Zorn AM., Development. July 15, 2022; 149 (14):                         


Lysosomes are required for early dorsal signaling in the Xenopus embryo., Tejeda-Muñoz N, De Robertis EM., Proc Natl Acad Sci U S A. January 1, 2022; 119 (17): e2201008119.                          


Reduced Retinoic Acid Signaling During Gastrulation Induces Developmental Microcephaly., Gur M, Bendelac-Kapon L, Shabtai Y, Pillemer G, Fainsod A., Front Cell Dev Biol. January 1, 2022; 10 844619.                        


A non-transcriptional function of Yap regulates the DNA replication program in Xenopus laevis., Meléndez García R, Haccard O, Chesneau A, Narassimprakash H, Roger J, Perron M, Marheineke K, Bronchain O., Elife. January 1, 2022; 11                             


Application of the RNA interference technique to Xenopus embryos: Specific reduction of the β-catenin gene products by short double-stranded RNA produced by recombinant human Dicer., Tagami Y, Nishiyama T, Omote M, Watanabe M., Dev Growth Differ. December 1, 2021; 63 (9): 467-477.


Temporal Gradients Controlling Embryonic Cell Cycle., Liu B, Zhao H, Wu K, Großhans J., Biology (Basel). June 9, 2021; 10 (6):


Lamin B receptor-mediated chromatin tethering to the nuclear envelope is detrimental to the Xenopus blastula., Oda H, Kato S, Ohsumi K, Iwabuchi M., J Biochem. April 18, 2021; 169 (3): 313-326.


Establishing embryonic territories in the context of Wnt signaling., Velloso I, Maia LA, Amado NG, Reis AH, He X, Abreu JG., Int J Dev Biol. January 1, 2021; 65 (4-5-6): 227-233.      


Epigenetic regulation of replication origin assembly: A role for histone H1 and chromatin remodeling factors., Falbo L, Costanzo V., Bioessays. January 1, 2021; 43 (1): e2000181.


Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates., Bright AR, van Genesen S, Li Q, Grasso A, Frölich S, van der Sande M, van Heeringen SJ, Veenstra GJC., EMBO J. January 1, 2021; 40 (9): e104913.                        


Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage., Castro Colabianchi AM, Tavella MB, Boyadjián López LE, Rubinstein M, Franchini LF, López SL., Biol Open. January 1, 2021; 10 (2):                 


Furry is required for cell movements during gastrulation and functionally interacts with NDR1., Cervino AS, Moretti B, Stuckenholz C, Grecco HE, Davidson LA, Davidson LA, Cirio MC., Sci Rep. January 1, 2021; 11 (1): 6607.                                  


The cytokine FAM3B/PANDER is an FGFR ligand that promotes posterior development in Xenopus., Zhang F, Zhu X, Wang P, He Q, Huang H, Zheng T, Li Y, Jia H, Xu L, Zhao H, Colozza G, Tao Q, De Robertis EM, Ding Y., Proc Natl Acad Sci U S A. January 1, 2021; 118 (20):           


Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway., Wang H, Wang C, Wang C, Wang C, Long Q, Zhang Y, Wang M, Liu J, Qi X, Cai D, Lu G, Sun J, Yao YG, Chan WY, Chan WY, Deng Y, Zhao H., Development. January 1, 2021; 148 (10):                                           


Rab7 is required for mesoderm patterning and gastrulation in Xenopus., Kreis J, Wielath FM, Vick P., Biol Open. January 1, 2021; 10 (7):                               


The dual-specificity protein kinase Clk3 is essential for Xenopus neural development., Virgirinia RP, Nakamura M, Takebayashi-Suzuki K, Fatchiyah F, Suzuki A, Suzuki A., Biochem Biophys Res Commun. January 1, 2021; 567 99-105.                                  


Xenopus chip for single-egg trapping, in vitro fertilization, development, and tadpole escape., Nam SW, Chae JP, Kwon YH, Son MY, Bae JS, Park MJ., Biochem Biophys Res Commun. January 1, 2021; 569 29-34.


A novel class III endogenous retrovirus with a class I envelope gene in African frogs with an intact genome and developmentally regulated transcripts in Xenopus tropicalis., Yedavalli VRK, Patil A, Parrish J, Kozak CA., Retrovirology. January 1, 2021; 18 (1): 20.              


The DNA-to-cytoplasm ratio broadly activates zygotic gene expression in Xenopus., Jukam D, Kapoor RR, Straight AF, Skotheim JM., Curr Biol. January 1, 2021; 31 (19): 4269-4281.e8.                          


The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K, Bhamra S, Paroissin C, Maneta-Peyret L, Boué-Grabot E, Jones EA., Commun Biol. January 1, 2021; 4 (1): 1158.                                


A comparative analysis of fibroblast growth factor receptor signalling during Xenopus development., Brunsdon H, Isaacs HV., Biol Cell. May 1, 2020; 112 (5): 127-139.                


The tumor suppressor PTPRK promotes ZNRF3 internalization and is required for Wnt inhibition in the Spemann organizer., Chang LS, Kim M, Glinka A, Reinhard C, Niehrs C., Elife. January 1, 2020; 9                                                                                               


The regulatory proteins DSCR6 and Ezh2 oppositely regulate Stat3 transcriptional activity in mesoderm patterning during Xenopus development., Loreti M, Shi DL, Carron C., J Biol Chem. January 1, 2020; 295 (9): 2724-2735.                


Chromatin accessibility and histone acetylation in the regulation of competence in early development., Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS., Dev Biol. January 1, 2020; 462 (1): 20-35.                


Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos., Lichtig H, Artamonov A, Polevoy H, Reid CD, Bielas SL, Frank D., Front Physiol. January 1, 2020; 11 75.                    


SSRP1-mediated histone H1 eviction promotes replication origin assembly and accelerated development., Falbo L, Raspelli E, Romeo F, Fiorani S, Pezzimenti F, Casagrande F, Costa I, Parazzoli D, Costanzo V., Nat Commun. January 1, 2020; 11 (1): 1345.                


A scalable pipeline for designing reconfigurable organisms., Kriegman S, Blackiston D, Levin M, Bongard J., Proc Natl Acad Sci U S A. January 1, 2020; 117 (4): 1853-1859.        


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR, Xu Y, Xu Y, Everitt A, Dea J, Exner CRT, Willsey AJ, State MW, Harland RM., Development. January 1, 2020; 147 (21):                             


Polo-like kinase 1 (Plk1) is a positive regulator of DNA replication in the Xenopus in vitro system., Ciardo D, Haccard O, Narassimprakash H, Chiodelli V, Goldar A, Marheineke K., Cell Cycle. January 1, 2020; 19 (14): 1817-1832.


GSK3 Inhibits Macropinocytosis and Lysosomal Activity through the Wnt Destruction Complex Machinery., Albrecht LV, Tejeda-Muñoz N, Bui MH, Cicchetto AC, Di Biagio D, Colozza G, Schmid E, Piccolo S, Christofk HR, De Robertis EM., Cell Rep. January 1, 2020; 32 (4): 107973.                                      


Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway., Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY., Development. January 1, 2020; 147 (17):                 


Epigenetic homogeneity in histone methylation underlies sperm programming for embryonic transcription., Oikawa M, Simeone A, Hormanseder E, Teperek M, Gaggioli V, O'Doherty A, Falk E, Sporniak M, D'Santos C, Franklin VNR, Kishore K, Bradshaw CR, Keane D, Freour T, David L, Grzybowski AT, Ruthenburg AJ, Gurdon J, Jullien J., Nat Commun. January 1, 2020; 11 (1): 3491.              


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M, Amado N, Tan J, Reis A, Ge M, Abreu JG, He X., Elife. January 1, 2020; 9                                                                                           


The Stemness Gene Mex3A Is a Key Regulator of Neuroblast Proliferation During Neurogenesis., Naef V, De Sarlo M, Testa G, Corsinovi D, Azzarelli R, Borello U, Ori M., Front Cell Dev Biol. January 1, 2020; 8 549533.            


Dact-4 is a Xenopus laevis Spemann organizer gene related to the Dapper/Frodo antagonist of β-catenin family of proteins., Colozza G, De Robertis EM., Gene Expr Patterns. January 1, 2020; 38 119153.                        


Hes5.9 Coordinate FGF and Notch Signaling to Modulate Gastrulation via Regulating Cell Fate Specification and Cell Migration in Xenopus tropicalis., Huang X, Zhang L, Yang S, Zhang Y, Wu M, Chen P., Genes (Basel). January 1, 2020; 11 (11):                   


Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals., Mulholland CB, Nishiyama A, Ryan J, Nakamura R, Yiğit M, Glück IM, Trummer C, Qin W, Bartoschek MD, Traube FR, Parsa E, Ugur E, Modic M, Acharya A, Stolz P, Ziegenhain C, Wierer M, Enard W, Carell T, Lamb DC, Takeda H, Nakanishi M, Bultmann S, Leonhardt H., Nat Commun. January 1, 2020; 11 (1): 5972.                


Mcrs1 interacts with Six1 to influence early craniofacial and otic development., Neilson KM, Keer S, Bousquet N, Macrorie O, Majumdar HD, Kenyon KL, Alfandari D, Alfandari D, Moody SA., Dev Biol. January 1, 2020; 467 (1-2): 39-50.                  


Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway., Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY., Development. January 1, 2020;                                       


Cdc2-like kinase 2 (Clk2) promotes early neural development in Xenopus embryos., Virgirinia RP, Jahan N, Okada M, Takebayashi-Suzuki K, Yoshida H, Nakamura M, Akao H, Yoshimoto Y, Fatchiyah F, Ueno N, Suzuki A, Suzuki A., Dev Growth Differ. August 1, 2019; 61 (6): 365-377.                              


The Spatiotemporal Control of Zygotic Genome Activation., Gentsch GE, Owens NDL, Smith JC., iScience. June 28, 2019; 16 485-498.                          


A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos., Bertke MM, Dubiak KM, Cronin L, Zeng E, Huber PW., BMC Genomics. May 17, 2019; 20 (1): 386.              


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A, Hirakawa M, Sakuma T, Yamamoto T, Hashimoto C., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                                


Analysis of Cell Fate Commitment in Xenopus Embryos., Moody SA., Cold Spring Harb Protoc. January 1, 2019; 2019 (1):


Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor., Jalvy S, Veschambre P, Fédou S, Rezvani HR, Thézé N, Thiébaud P., Dev Biol. January 1, 2019; 447 (2): 200-213.                                  


Retinoic acid signaling reduction recapitulates the effects of alcohol on embryo size., Shukrun N, Shabtai Y, Pillemer G, Fainsod A., Genesis. January 1, 2019; 57 (7-8): e23284.                


Characterization of Xenopus laevis guanine deaminase reveals new insights for its expression and function in the embryonic kidney., Slater PG, Cammarata GM, Monahan C, Bowers JT, Yan O, Lee S, Lowery LA., Dev Dyn. January 1, 2019; 248 (4): 296-305.        


Evolution of the Rho guanine nucleotide exchange factors Kalirin and Trio and their gene expression in Xenopus development., Kratzer MC, England L, Apel D, Hassel M, Borchers A., Gene Expr Patterns. January 1, 2019; 32 18-27.                              


What are the roles of retinoids, other morphogens, and Hox genes in setting up the vertebrate body axis?, Durston AJ., Genesis. January 1, 2019; 57 (7-8): e23296.            

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next