Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4863) Expression Attributions Wiki
XB-ANAT-511

Papers associated with nerve

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Regeneration of the optic nerve in Xenopus laevis., GAZE RM., Q J Exp Physiol Cogn Med Sci. July 1, 1959; 44 290-308.


Steady state inactivation of sodium permeability in myelinated nerve fibres of Xenopus laevis., FRANKENHAEUSER B., J Physiol. October 1, 1959; 148 671-6.


Membrane resistance and conduction velocity of large myelinated nerve fibres from Xenopus laevis., FRANKENHAEUSER B., J Physiol. October 1, 1959; 148 677-82.


Sodium currents in the myelinated nerve fibre of Xenopus laevis investigated with the voltage clamp technique., DODGE FA., J Physiol. October 1, 1959; 148 188-200.


The structure of myelin sheaths in the central nervous system of Xenopus laevis (Daudin)., PETERS A., J Biophys Biochem Cytol. February 1, 1960; 7 121-6.


Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis., FRANKENHAEUSER B., J Physiol. June 1, 1960; 151 491-501.


The formation and structure of myelin sheaths in the central nervous system., PETERS A., J Biophys Biochem Cytol. October 1, 1960; 8 431-46.


The development, structure and composition of the optic nerve of Xenopus laevis (Daudin)., GAZE RM., Q J Exp Physiol Cogn Med Sci. October 1, 1961; 46 299-309.


Potassium permeability in myelinated nerve fibres of Xenopus laevis., FRANKENHAEUSER B., J Physiol. January 1, 1962; 160 54-61.


Instantaneous potassium currents in myelinated nerve fibres of Xenopus laevis., FRANKENHAEUSER B., J Physiol. January 1, 1962; 160 46-53.


Delayed currents in myelinated nerve fibres of Xenopus laevis investigated with voltage clamp technique., FRANKENHAEUSER B., J Physiol. January 1, 1962; 160 40-5.


INACTIVATION OF THE SODIUM-CARRYING MECHANISM IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS., FRANKENHAEUSER B., J Physiol. November 1, 1963; 169 445-51.


THE SPECIFICITY OF THE INITIAL CURRENT IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS. VOLTAGE CLAMP EXPERIMENTS., FRANKENHAEUSER B., J Physiol. November 1, 1963; 169 438-44.


THE EFFECT OF TEMPERATURE ON THE SODIUM AND POTASSIUM PERMEABILITY CHANGES IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS., FRANKENHAEUSER B., J Physiol. November 1, 1963; 169 431-7.


A QUANTITATIVE DESCRIPTION OF POTASSIUM CURRENTS IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS., FRANKENHAEUSER B., J Physiol. November 1, 1963; 169 424-30.


THE ACTION POTENTIAL IN THE MYELINATED NERVE FIBER OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA., FRANKENHAEUSER B., J Physiol. June 1, 1964; 171 302-15.


ACCOMMODATION RELATED TO INACTIVATION OF THE SODIUM PERMEABILITY IN SINGLE MYELINATED NERVE FIBRES FROM XENOPUS LAEVIS., VALLBO AB., Acta Physiol Scand. August 1, 1964; 61 429-44.


ACCOMMODATION OF SINGLE MYELINATED NERVE FIBRES FROM XENOPUS LAEVIS RELATED TO TYPE OF END ORGAN., VALLBO AB., Acta Physiol Scand. August 1, 1964; 61 413-28.


ACCOMMODATION IN MYELINATED NERVE FIBRES OF XENOPUS LAEVIS AS COMPUTED ON THE BASIS OF VOLTAGE CLAMP DATA., FRANKENHAEUSER B., Acta Physiol Scand. January 1, 1965; 63 1-20.


IODOACETATE DEPRESSION IN XENOPUS SCIATIC SINGLE NERVE FIBERS., SCHOEPFLE GM., Am J Physiol. April 1, 1965; 208 720-3.


Computed action potential in nerve from Xenopus laevis., Frankenhaeuser B., J Physiol. October 1, 1965; 180 (4): 780-7.


Limb regeneration and nerve fiber number in Rana sylvatica and Xenopus laevis., Rzehak K., J Exp Zool. June 1, 1966; 162 (1): 15-21.


[Comparative electrophysiologic study of the motor and sensory myelinized nerve fibers in Rana esculenta and Xenopus laevis]., Barillot JC., C R Seances Soc Biol Fil. January 1, 1967; 161 (1): 169-72.


Deoxy-D-glucose and cyanide depression in Xenopus single medullated nerve fibers., Schoepfle GM., Am J Physiol. May 1, 1967; 212 (5): 1205-8.


Visual recovery following regeneration of the optic nerve through the oculomotor nerve root in Xenopus., Hibbard E., Exp Neurol. November 1, 1967; 19 (3): 350-6.


[Granulated nerve cells in the tuber cinereum of Xenopus laevis]., Peute J., Naturwissenschaften. August 1, 1968; 55 (8): 393.


Conduction velocity in myelinated nerve fibres of Xenopus laevis., Hutchinson NA., J Physiol. June 1, 1970; 208 (2): 279-89.


Potassium inactivation in single myelinated nerve fibres of Xenopus laevis., Schwarz JR., Pflugers Arch. January 1, 1971; 330 (1): 61-73.


Optic nerve fibre counts and retinal ganglion cell counts during development of Xenopus laevis (Daudin)., Wilson MA., Q J Exp Physiol Cogn Med Sci. April 1, 1971; 56 (2): 83-91.


[Influence of the optic nerve on the regeneration of the mesecephalon of Xenopus laevis (Daudin)]., Filoni S., Arch Ital Anat Embriol. January 1, 1972; 77 (1): 1-24.


Myelinated nerve fibers in Xenopus tadpoles: in vivo observations and fine structure., Webster Hde F., J Neuropathol Exp Neurol. January 1, 1972; 31 (1): 102-12.


Laser temperature-jump technique for relaxation studies of the ionic conductances in myelinated nerve fibers., Moore LE., Biophys J. February 1, 1972; 12 (2): 157-74.


Development and stability of postional information in Xenopus retinal ganglion cells., Hunt RK., Proc Natl Acad Sci U S A. April 1, 1972; 69 (4): 780-3.


Detection of organelles in myelinated nerve fibers by dark-field microscopy., Smith RS., Can J Physiol Pharmacol. May 1, 1972; 50 (5): 467-9.


The effect of calcium on the potassium permeability in the myelinated nerve fibre of Xenopus laevis., Brismar T., Acta Physiol Scand. June 1, 1972; 85 (2): 237-41.


The effect of DDT and dieldrin on myelinated nerve fibres., van den Bercken J., Eur J Pharmacol. November 1, 1972; 20 (2): 205-14.


Patterns of particle movement in nerve fibres in vitro. An analysis by photokymography and microscopy., Berlinrood M., J Cell Sci. November 1, 1972; 11 (3): 875-86.


Activation parameters of the nerve impulse conduction. II., Mărgineanu DG., Experientia. November 15, 1972; 28 (11): 1286-8.


The origins of nerve-cell specificity., Jacobson M., Sci Am. February 1, 1973; 228 (2): 26-35.


Effects of Naja nivea venom on nerve, cardiac and skeletal muscle activity of the frog., Loots JM., Br J Pharmacol. March 1, 1973; 47 (3): 576-85.


Effects of ionic concentration on permeability properties of nodal membrane in myelinated nerve fibres of Xenopus laevis. Potential clamp experiments., Brismar T., Acta Physiol Scand. April 1, 1973; 87 (4): 474-84.


Neuronal locus specificity: altered pattern of spatial deployment in fused fragments of embryonic xenopus eyes., Hunt RK., Science. May 4, 1973; 180 (4085): 509-11.


Ionic currents at resting potential in nerve fibres from Xenopus laevis. Potential clamp experiments., Arhem P., Acta Physiol Scand. August 1, 1973; 88 (4): 446-54.


The rate of action of tetrodotoxin on myelinated nerve fibres of Xenopus laevis and Rana esculenta., Schwarz JR., J Physiol. August 1, 1973; 233 (1): 167-94.


Microtubule and neurofilament densities in amphibian spinal root nerve fibers: relationship to axoplasmic transport., Smith RS., Can J Physiol Pharmacol. November 1, 1973; 51 (11): 798-806.


Posttetanic changes in membrane potential of single medullated nerve fibers., Schoepfle GM., Am J Physiol. December 1, 1973; 225 (6): 1501-7.


Regeneration electrode units: implants for recording from single peripheral nerve fibers in freely moving animals., Mannard A., Science. February 8, 1974; 183 (4124): 547-9.


Local anesthetics: effects on permeability properties of nodal membrane in myelinated nerve fibres from xenopus. Potential clamp experiments., Arhem P., Acta Physiol Scand. May 1, 1974; 91 (1): 11-21.


DDT and related substances on myelinated nerve: effects on permeability properties., Arhem P., Acta Physiol Scand. May 1, 1974; 91 (1): 130-2.


Deployment of optic nerve fibers is determined by positional markers in the frog''s tectum., Levine R., Exp Neurol. June 1, 1974; 43 (3): 527-38.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???