Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4863) Expression Attributions Wiki
XB-ANAT-511

Papers associated with nerve (and slc12a3)

Limit to papers also referencing gene:
Show all nerve papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

PDGF-B: The missing piece in the mosaic of PDGF family role in craniofacial development., Corsinovi D., Dev Dyn. July 1, 2019; 248 (7): 603-612.            


FoxN3 is necessary for the development of the interatrial septum, the ventricular trabeculae and the muscles at the head/trunk interface in the African clawed frog, Xenopus laevis (Lissamphibia: Anura: Pipidae)., Naumann B., Dev Dyn. May 1, 2019; 248 (5): 323-336.          


The age-regulated zinc finger factor ZNF367 is a new modulator of neuroblast proliferation during embryonic neurogenesis., Naef V., Sci Rep. August 7, 2018; 8 (1): 11836.                      


Implication of thyroid hormone signaling in neural crest cells migration: Evidence from thyroid hormone receptor beta knockdown and NH3 antagonist studies., Bronchain OJ., Mol Cell Endocrinol. January 5, 2017; 439 233-246.


Functionomics of NCC mutations in Gitelman syndrome using a novel mammalian cell-based activity assay., Valdez-Flores MA., Am J Physiol Renal Physiol. December 1, 2016; 311 (6): F1159-F1167.


Chlorpyrifos exposure affects fgf8, sox9, and bmp4 expression required for cranial neural crest morphogenesis and chondrogenesis in Xenopus laevis embryos., Tussellino M., Environ Mol Mutagen. October 1, 2016; 57 (8): 630-640.


Platelet derived growth factor B gene expression in the Xenopus laevis developing central nervous system., Giannetti K., Int J Dev Biol. January 1, 2016; 60 (4-6): 175-9.      


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. May 19, 2015; 7 62.                                            


Six1 is a key regulator of the developmental and evolutionary architecture of sensory neurons in craniates., Yajima H., BMC Biol. May 29, 2014; 12 40.                        


Protein tyrosine phosphatase 4A3 (PTP4A3) is required for Xenopus laevis cranial neural crest migration in vivo., Maacha S., PLoS One. December 9, 2013; 8 (12): e84717.              


γ-Adducin stimulates the thiazide-sensitive NaCl cotransporter., Dimke H., J Am Soc Nephrol. March 1, 2011; 22 (3): 508-17.


Rare mutations in SLC12A1 and SLC12A3 protect against hypertension by reducing the activity of renal salt cotransporters., Acuña R., J Hypertens. March 1, 2011; 29 (3): 475-83.


WNK3 is a putative chloride-sensing kinase., Pacheco-Alvarez D., Cell Physiol Biochem. January 1, 2011; 28 (6): 1123-34.


Renal and brain isoforms of WNK3 have opposite effects on NCCT expression., Glover M., J Am Soc Nephrol. June 1, 2009; 20 (6): 1314-22.


Surface expression of epithelial Na channel protein in rat kidney., Frindt G., J Gen Physiol. June 1, 2008; 131 (6): 617-27.                            


Gene expression in Xenopus laevis embryos after Triadimefon exposure., Papis E., Gene Expr Patterns. January 1, 2007; 7 (1-2): 137-42.          


Regulation of the expression of the Na/Cl cotransporter by WNK4 and WNK1: evidence that accelerated dynamin-dependent endocytosis is not involved., Golbang AP., Am J Physiol Renal Physiol. December 1, 2006; 291 (6): F1369-76.


Triadimefon causes branchial arch malformations in Xenopus laevis embryos., Papis E., Environ Sci Pollut Res Int. July 1, 2006; 13 (4): 251-5.


WNK1 affects surface expression of the ROMK potassium channel independent of WNK4., Cope G., J Am Soc Nephrol. July 1, 2006; 17 (7): 1867-74.


WNK3, a kinase related to genes mutated in hereditary hypertension with hyperkalaemia, regulates the K+ channel ROMK1 (Kir1.1)., Leng Q., J Physiol. March 1, 2006; 571 (Pt 2): 275-86.


XHas2 activity is required during somitogenesis and precursor cell migration in Xenopus development., Ori M., Development. February 1, 2006; 133 (4): 631-40.                        


Hoxa2 knockdown in Xenopus results in hyoid to mandibular homeosis., Baltzinger M., Dev Dyn. December 1, 2005; 234 (4): 858-67.          


WNK3 kinase is a positive regulator of NKCC2 and NCC, renal cation-Cl- cotransporters required for normal blood pressure homeostasis., Rinehart J., Proc Natl Acad Sci U S A. November 15, 2005; 102 (46): 16777-82.


A new kindred with pseudohypoaldosteronism type II and a novel mutation (564D>H) in the acidic motif of the WNK4 gene., Golbang AP., Hypertension. August 1, 2005; 46 (2): 295-300.


Regulation of apical localization of the thiazide-sensitive NaCl cotransporter by WNK4 in polarized epithelial cells., Yang SS., Biochem Biophys Res Commun. May 6, 2005; 330 (2): 410-4.        


WNK kinases and the control of blood pressure., Cope G., Pharmacol Ther. May 1, 2005; 106 (2): 221-31.


[WNK1 and WNK4, new players in salt and water homeostasis], Hadchouel J., Med Sci (Paris). January 1, 2005; 21 (1): 55-60.


Pathophysiology of functional mutations of the thiazide-sensitive Na-Cl cotransporter in Gitelman disease., Sabath E., Am J Physiol Renal Physiol. August 1, 2004; 287 (2): F195-203.


A single nucleotide polymorphism alters the activity of the renal Na+:Cl- cotransporter and reveals a role for transmembrane segment 4 in chloride and thiazide affinity., Moreno E., J Biol Chem. April 16, 2004; 279 (16): 16553-60.


Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4., Wilson FH., Proc Natl Acad Sci U S A. January 21, 2003; 100 (2): 680-4.


Expression of voltage-dependent potassium channels in the developing visual system of Xenopus laevis., Pollock NS., J Comp Neurol. October 28, 2002; 452 (4): 381-91.                


The sacral neural crest contributes neurons and glia to the post-umbilical gut: spatiotemporal analysis of the development of the enteric nervous system., Burns AJ., Development. November 1, 1998; 125 (21): 4335-47.

???pagination.result.page??? 1