Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (4863) Expression Attributions Wiki
XB-ANAT-511

Papers associated with nerve (and ache)

Limit to papers also referencing gene:
Show all nerve papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Molecular determinants of binding of non-oxime bispyridinium nerve agent antidote compounds to the adult muscle nAChR., Epstein M., Toxicol Lett. April 1, 2021; 340 114-122.


The non-competitive acetylcholinesterase inhibitor APS12-2 is a potent antagonist of skeletal muscle nicotinic acetylcholine receptors., Grandič M., Toxicol Appl Pharmacol. December 1, 2012; 265 (2): 221-8.


Actions of bis(7)-tacrine and tacrine on transient potassium current in rat DRG neurons and potassium current mediated by K(V)4.2 expressed in Xenopus oocyte., Li XY., Dev Biol. March 8, 2010; 1318 23-32.


Enteric co-innervation of esophageal striated muscle fibers: a phylogenetic study., Hempfling C., Auton Neurosci. December 3, 2009; 151 (2): 135-41.


A peptide derived from acetylcholinesterase is a pivotal signalling molecule in neurodegeneration., Greenfield S., Chem Biol Interact. December 15, 2005; 157-158 211-8.


Exposure to the organophosphorus pesticide chlorpyrifos inhibits acetylcholinesterase activity and affects muscular integrity in Xenopus laevis larvae., Colombo A., Chemosphere. December 1, 2005; 61 (11): 1665-71.


The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane., Olivera-Bravo S., Br J Pharmacol. January 1, 2005; 144 (1): 88-97.


Comparative teratogenicity of chlorpyrifos and malathion on Xenopus laevis development., Bonfanti P., Aquat Toxicol. December 10, 2004; 70 (3): 189-200.


Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons., Fayuk D., Mol Pharmacol. September 1, 2004; 66 (3): 658-66.


A novel peptide modulates alpha7 nicotinic receptor responses: implications for a possible trophic-toxic mechanism within the brain., Greenfield SA., J Neurochem. July 1, 2004; 90 (2): 325-31.


Role of piperonyl butoxide in the toxicity of chlorpyrifos to Ceriodaphnia dubia and Xenopus laevis., El-Merhibi A., Ecotoxicol Environ Saf. February 1, 2004; 57 (2): 202-12.


Expression of the P2Y1 nucleotide receptor in chick muscle: its functional role in the regulation of acetylcholinesterase and acetylcholine receptor., Choi RC., J Neurosci. December 1, 2001; 21 (23): 9224-34.  


Acetylcholinesterase clustering at the neuromuscular junction involves perlecan and dystroglycan., Peng HB., J Cell Biol. May 17, 1999; 145 (4): 911-21.                  


Perisynaptic Schwann cells at neuromuscular junctions revealed by a novel monoclonal antibody., Astrow SH., J Neurocytol. September 1, 1998; 27 (9): 667-81.


Acetylcholinesterase enhances neurite growth and synapse development through alternative contributions of its hydrolytic capacity, core protein, and variable C termini., Sternfeld M., J Neurosci. February 15, 1998; 18 (4): 1240-9.


Androgen regulation of neuromuscular junction structure and function in a sexually dimorphic muscle of the frog Xenopus laevis., Brennan C., J Neurobiol. June 1, 1995; 27 (2): 172-88.


Former neuritic pathways containing endogenous neural agrin have high synaptogenic activity., Cohen MW., Dev Biol. February 1, 1995; 167 (2): 458-68.              


Transgenic engineering of neuromuscular junctions in Xenopus laevis embryos transiently overexpressing key cholinergic proteins., Shapira M., Proc Natl Acad Sci U S A. September 13, 1994; 91 (19): 9072-6.


Dorsomedial telencephalon of lungfishes: a pallial or subpallial structure? Criteria based on histology, connectivity, and histochemistry., von Bartheld CS., J Comp Neurol. April 1, 1990; 294 (1): 14-29.


Development of acetylcholinesterase induced by basic polypeptide-coated latex beads in cultured Xenopus muscle cells., Peng HB., Dev Biol. June 1, 1988; 127 (2): 452-5.


Monoclonal antibody Tor 23 recognizes a determinant of a presynaptic acetylcholinesterase., Kushner PD., J Neurochem. June 1, 1987; 48 (6): 1942-53.


A comparative study of the innervation of the choroid plexus in amphibia., Ando K., Experientia. April 15, 1986; 42 (4): 394-8.


Elimination of preexistent acetylcholine receptor clusters induced by the formation of new clusters in the absence of nerve., Peng HB., J Neurosci. February 1, 1986; 6 (2): 581-9.


Formation of the vertebrate neuromuscular junction., Moody-Corbett F., Dev Biol (N Y 1985). January 1, 1986; 2 605-35.


Molecular forms of acetylcholinesterase in Xenopus muscle., Lappin RI., Dev Biol. August 1, 1985; 110 (2): 269-74.


Membrane-related specializations associated with acetylcholine receptor aggregates induced by electric fields., Luther PW., J Cell Biol. January 1, 1985; 100 (1): 235-44.


Acetylcholine receptor aggregation parallels the deposition of a basal lamina proteoglycan during development of the neuromuscular junction., Anderson MJ., J Cell Biol. November 1, 1984; 99 (5): 1769-84.


Two types of miniature endplate potentials in Xenopus nerve-muscle cultures., Kidokoro Y., Neurosci Res. June 1, 1984; 1 (3): 157-70.


Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers., Anderson MJ., J Cell Biol. November 1, 1983; 97 (5 Pt 1): 1396-411.


Rapid lateral diffusion of extrajunctional acetylcholine receptors in the developing muscle membrane of Xenopus tadpole., Young SH., J Neurosci. January 1, 1983; 3 (1): 225-31.


Pineal complex of the clawed toad, Xenopus laevis Daud.: structure and function., Korf HW., Cell Tissue Res. January 1, 1981; 216 (1): 113-30.

???pagination.result.page??? 1