Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (2164) Expression Attributions Wiki
XB-ANAT-524

Papers associated with posterior (and rho)

Limit to papers also referencing gene:
Show all posterior papers
???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Early life exposure to perfluorooctanesulfonate (PFOS) impacts vital biological processes in Xenopus laevis: Integrated morphometric and transcriptomic analyses., Ismail T., Ecotoxicol Environ Saf. January 1, 2024; 269 115820.                      


TBC1D32 variants disrupt retinal ciliogenesis and cause retinitis pigmentosa., Bocquet B., JCI Insight. November 8, 2023; 8 (21):                                               


Functions of block of proliferation 1 during anterior development in Xenopus laevis., Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.                        


Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm., Matsuda M., Development. May 15, 2022; 149 (10):                                   


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Novel truncating mutations in CTNND1 cause a dominant craniofacial and cardiac syndrome., Alharatani R., Hum Mol Genet. July 21, 2020; 29 (11): 1900-1921.                  


Extraocular, rod-like photoreceptors in a flatworm express xenopsin photopigment., Rawlinson KA., Elife. October 22, 2019; 8                     


A dual function of FGF signaling in Xenopus left-right axis formation., Schneider I., Development. May 10, 2019; 146 (9):                               


Using the Xenopus Developmental Eye Regrowth System to Distinguish the Role of Developmental Versus Regenerative Mechanisms., Kha CX., Front Physiol. January 1, 2019; 10 502.                


The RhoGEF protein Plekhg5 regulates apical constriction of bottle cells during gastrulation., Popov IK., Development. December 12, 2018; 145 (24):             


An Early Function of Polycystin-2 for Left-Right Organizer Induction in Xenopus., Vick P., iScience. April 27, 2018; 2 76-85.                                        


A model for investigating developmental eye repair in Xenopus laevis., Kha CX., Exp Eye Res. April 1, 2018; 169 38-47.                


Models of convergent extension during morphogenesis., Shindo A., Wiley Interdiscip Rev Dev Biol. January 1, 2018; 7 (1):                 


Frizzled 3 acts upstream of Alcam during embryonic eye development., Seigfried FA., Dev Biol. June 1, 2017; 426 (1): 69-83.                        


Noggin 1 overexpression in retinal progenitors affects bipolar cell generation., Messina A., Int J Dev Biol. January 1, 2016; 60 (4-6): 151-7.        


G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus., Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.                                          


TGF-β Signaling Regulates the Differentiation of Motile Cilia., Tözser J., Cell Rep. May 19, 2015; 11 (7): 1000-7.                


Inositol kinase and its product accelerate wound healing by modulating calcium levels, Rho GTPases, and F-actin assembly., Soto X., Proc Natl Acad Sci U S A. July 2, 2013; 110 (27): 11029-34.                                      


The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling., Wang F., Dev Biol. July 1, 2013; 379 (1): 16-27.                            


Ciliary and non-ciliary expression and function of PACRG during vertebrate development., Thumberger T., Cilia. August 1, 2012; 1 (1): 13.                        


ATP4a is required for Wnt-dependent Foxj1 expression and leftward flow in Xenopus left-right development., Walentek P., Cell Rep. May 31, 2012; 1 (5): 516-27.                              


SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton., Langdon Y., Development. March 1, 2012; 139 (5): 948-57.                


Evolutionarily repurposed networks reveal the well-known antifungal drug thiabendazole to be a novel vascular disrupting agent., Cha HJ., PLoS Biol. January 1, 2012; 10 (8): e1001379.                  


MIM regulates vertebrate neural tube closure., Liu W., Development. May 1, 2011; 138 (10): 2035-47.                            


Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling., Xu K., Dev Cell. April 19, 2011; 20 (4): 526-39.  


xGit2 and xRhoGAP 11A regulate convergent extension and tissue separation in Xenopus gastrulation., Köster I., Dev Biol. August 1, 2010; 344 (1): 26-35.          


Morphogenesis of the primitive gut tube is generated by Rho/ROCK/myosin II-mediated endoderm rearrangements., Reed RA., Dev Dyn. December 1, 2009; 238 (12): 3111-25.        


The role of miR-124a in early development of the Xenopus eye., Qiu R., Mech Dev. October 1, 2009; 126 (10): 804-16.          


Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells., Park TJ., Nat Genet. July 1, 2008; 40 (7): 871-9.      


Mechanism of activation of the Formin protein Daam1., Liu W., Proc Natl Acad Sci U S A. January 8, 2008; 105 (1): 210-5.                


Recruitment of Cdc42 through the GAP domain of RLIP participates in remodeling of the actin cytoskeleton and is involved in Xenopus gastrulation., Boissel L., Dev Biol. December 1, 2007; 312 (1): 331-43.              


ANR5, an FGF target gene product, regulates gastrulation in Xenopus., Chung HA., Curr Biol. June 5, 2007; 17 (11): 932-9.                  


Expression of RhoB in the developing Xenopus laevis embryo., Vignal E., Gene Expr Patterns. January 1, 2007; 7 (3): 282-8.                          


Neurotrophin receptor homolog (NRH1) proteins regulate mesoderm formation and apoptosis during early Xenopus development., Knapp D., Dev Biol. December 15, 2006; 300 (2): 554-69.                  


Frizzled 5 signaling governs the neural potential of progenitors in the developing Xenopus retina., Van Raay TJ., Neuron. April 7, 2005; 46 (1): 23-36.                        


Olfactory and lens placode formation is controlled by the hedgehog-interacting protein (Xhip) in Xenopus., Cornesse Y., Dev Biol. January 15, 2005; 277 (2): 296-315.                          


Rho guanine nucleotide exchange factor xNET1 implicated in gastrulation movements during Xenopus development., Miyakoshi A., Differentiation. February 1, 2004; 72 (1): 48-55.                  


A tissue restricted role for the Xenopus Jun N-terminal kinase kinase kinase MLK2 in cement gland and pronephric tubule differentiation., Poitras L., Dev Biol. February 15, 2003; 254 (2): 200-14.      


Molecular cloning and expression analysis of dystroglycan during Xenopus laevis embryogenesis., Lunardi A., Mech Dev. December 1, 2002; 119 Suppl 1 S49-54.      


cDNA cloning, sequence comparison, and developmental expression of Xenopus rac1., Lucas JM., Mech Dev. July 1, 2002; 115 (1-2): 113-6.          


Xenopus Cdc42 regulates convergent extension movements during gastrulation through Wnt/Ca2+ signaling pathway., Choi SC., Dev Biol. April 15, 2002; 244 (2): 342-57.                  


Giant eyes in Xenopus laevis by overexpression of XOptx2., Zuber ME., Cell. August 6, 1999; 98 (3): 341-52.              


Induction of avian cardiac myogenesis by anterior endoderm., Schultheiss TM., Development. December 1, 1995; 121 (12): 4203-14.

???pagination.result.page??? 1