Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (154) Attributions Wiki
XB-STAGE-53

Papers associated with NF stage 39

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Adult frogs derived from the nuclei of single somatic cells., GURDON JB., Dev Biol. April 1, 1962; 4 256-73.            


Some morphogenetic features of the adenohypophysical primordium of early Xenopus laevis tadpoles., Erik N, Nyholm I., Cell Tissue Res. May 16, 1977; 180 (2): 223-30.


Developmental immunohistology of melanotrophs in Xenopus laevis tadpoles., Erik N, Nyholm I, Doerr-Schott J., Cell Tissue Res. May 16, 1977; 180 (2): 231-9.


The formation of photoreceptor synapses in the retina of larval Xenopus., Chen F, Witkovsky P., J Neurocytol. December 1, 1978; 7 (6): 721-40.


Immunohistochemical demonstration of TSH-, LH- and ACTH-cells in the hypophysis of tadpoles of Xenopus laevis D., Moriceau-Hay D, Doerr-Schott J, Dubois MP., Cell Tissue Res. January 1, 1982; 225 (1): 57-64.


Development of the optic nerve in Xenopus laevis. II. Gliogenesis, myelination and metamorphic remodelling., Cima C, Grant P., J Embryol Exp Morphol. December 1, 1982; 72 251-67.


Order in the initial retinotectal map in Xenopus: a new technique for labelling growing nerve fibres., Holt CE, Harris WA., Nature. January 13, 1983; 301 (5896): 150-2.


Choline acetyltransferase and cholinesterases in the developing Xenopus retina., Ma PM, Grant P., J Neurochem. May 1, 1984; 42 (5): 1328-37.


The development of the pars intermedia and its role in the regulation of dermal melanophores in the larvae of the amphibian Xenopus laevis., Verburg-van Kemenade BM, Willems PH, Jenks BG, van Overbeeke AP., Gen Comp Endocrinol. July 1, 1984; 55 (1): 54-65.


Development of early brainstem projections to the tail spinal cord of Xenopus., Nordlander RH, Baden ST, Ryba TM., J Comp Neurol. January 22, 1985; 231 (4): 519-29.


Cell type-specific expression of nuclear lamina proteins during development of Xenopus laevis., Benavente R, Krohne G, Franke WW., Cell. May 1, 1985; 41 (1): 177-90.                      


Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations., Sakaguchi DS, Murphey RK., J Neurosci. December 1, 1985; 5 (12): 3228-45.


Neural cell adhesion molecule expression in Xenopus embryos., Balak K, Jacobson M, Sunshine J, Rutishauser U., Dev Biol. February 1, 1987; 119 (2): 540-50.              


Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies., Takagi S, Tsuji T, Amagai T, Takamatsu T, Fujisawa H., Dev Biol. July 1, 1987; 122 (1): 90-100.                    


Expression sequences and distribution of two primary cell adhesion molecules during embryonic development of Xenopus laevis., Levi G, Crossin KL, Edelman GM., J Cell Biol. November 1, 1987; 105 (5): 2359-72.                  


Expression of intermediate filament proteins during development of Xenopus laevis. III. Identification of mRNAs encoding cytokeratins typical of complex epithelia., Fouquet B, Herrmann H, Franz JK, Franke WW., Development. December 1, 1988; 104 (4): 533-48.                      


Expression of intermediate filament proteins during development of Xenopus laevis. II. Identification and molecular characterization of desmin., Herrmann H, Fouquet B, Franke WW., Development. February 1, 1989; 105 (2): 299-307.              


The appearance of neural and glial cell markers during early development of the nervous system in the amphibian embryo., Messenger NJ, Warner AE., Development. September 1, 1989; 107 (1): 43-54.                      


Development of the abducens nuclei in the Xenopus laevis., Matesz C., Brain Res Dev Brain Res. February 1, 1990; 51 (2): 179-84.


Development of the oculomotor and trochlear nuclei in the Xenopus toad., Matesz C., Neurosci Lett. August 14, 1990; 116 (1-2): 1-6.


Correlated onset and patterning of proopiomelanocortin gene expression in embryonic Xenopus brain and pituitary., Hayes WP, Loh YP., Development. November 1, 1990; 110 (3): 747-57.              


A retinoic acid receptor expressed in the early development of Xenopus laevis., Ellinger-Ziegelbauer H, Dreyer C., Genes Dev. January 1, 1991; 5 (1): 94-104.              


The early development of the frog retinotectal projection., Taylor JS., Development. January 1, 1991; Suppl 2 95-104.            


Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis., Kawahara A, Baker BS, Tata JR., Development. August 1, 1991; 112 (4): 933-43.            


Retinoic acid causes abnormal development and segmental patterning of the anterior hindbrain in Xenopus embryos., Papalopulu N, Clarke JD, Bradley L, Wilkinson D, Krumlauf R, Holder N., Development. December 1, 1991; 113 (4): 1145-58.                          


Xenopus blastulae show regional differences in competence for mesoderm induction: correlation with endogenous basic fibroblast growth factor levels., Godsave SF, Shiurba RA., Dev Biol. June 1, 1992; 151 (2): 506-15.        


Large serotonin-like immunoreactive amacrine cells in the retina of developing Xenopus laevis., Zhu B, Straznicky C., Brain Res Dev Brain Res. September 18, 1992; 69 (1): 109-16.


Expression of carnosine-like immunoreactivity during retinal development in the clawed frog (Xenopus laevis)., Pognetto MS, Panzanelli P, Fasolo A, Cantino D., Brain Res Dev Brain Res. November 20, 1992; 70 (1): 134-8.


Integrin alpha subunit mRNAs are differentially expressed in early Xenopus embryos., Whittaker CA, DeSimone DW., Development. April 1, 1993; 117 (4): 1239-49.          


Expression of LIM class homeobox gene Xlim-3 in Xenopus development is limited to neural and neuroendocrine tissues., Taira M, Hayes WP, Otani H, Dawid IB., Dev Biol. September 1, 1993; 159 (1): 245-56.              


Distinct elements of the xsna promoter are required for mesodermal and ectodermal expression., Mayor R, Essex LJ, Bennett MF, Sargent MG., Development. November 1, 1993; 119 (3): 661-71.                  


Immunohistochemical studies on the development of the hypothalamo-hypophysial system in Xenopus laevis., Ogawa K, Suzuki E, Taniguchi K., Anat Rec. February 1, 1995; 241 (2): 244-54.


Absence of topography in precociously innervated tecta., Chien CB, Cornel EM, Holt CE., Development. August 1, 1995; 121 (8): 2621-31.


Molecular analysis and developmental expression of the focal adhesion kinase pp125FAK in Xenopus laevis., Hens MD, DeSimone DW., Dev Biol. August 1, 1995; 170 (2): 274-88.                    


Specific modulation of ectodermal cell fates in Xenopus embryos by glycogen synthase kinase., Itoh K, Tang TL, Neel BG, Sokol SY., Development. December 1, 1995; 121 (12): 3979-88.              


Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus., Gont LK, Fainsod A, Kim SH, De Robertis EM., Dev Biol. February 25, 1996; 174 (1): 174-8.  


Effects of estrogenic hormones on early development of Xenopus laevis., Nishimura N, Fukazawa Y, Uchiyama H, Iguchi T., J Exp Zool. July 1, 1997; 278 (4): 221-33.


Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development., Heller N, Brändli AW., Mech Dev. December 1, 1997; 69 (1-2): 83-104.        


Dual expression of GABA or serotonin and dopamine in Xenopus amacrine cells is transient and may be regulated by laminar cues., Huang S, Moody SA., Vis Neurosci. January 1, 1998; 15 (5): 969-77.


Xenopus Zic-related-1 and Sox-2, two factors induced by chordin, have distinct activities in the initiation of neural induction., Mizuseki K, Kishi M, Matsui M, Nakanishi S, Sasai Y., Development. February 1, 1998; 125 (4): 579-87.              


Thrombospondins in early Xenopus embryos: dynamic patterns of expression suggest diverse roles in nervous system, notochord, and muscle development., Urry LA, Whittaker CA, Duquette M, Lawler J, DeSimone DW., Dev Dyn. April 1, 1998; 211 (4): 390-407.                              


The origins of primitive blood in Xenopus: implications for axial patterning., Lane MC, Smith WC., Development. February 1, 1999; 126 (3): 423-34.            


Loss of ectodermal competence for lateral line placode formation in the direct developing frog Eleutherodactylus coqui., Schlosser G, Kintner C, Northcutt RG., Dev Biol. September 15, 1999; 213 (2): 354-69.                  


Genomic structure and embryonic expression of the Xenopus winged helix factors XFD-13/13'., Köster M, Dillinger K, Knöchel W., Mech Dev. October 1, 1999; 88 (1): 89-93.        


Synergism between Pax-8 and lim-1 in embryonic kidney development., Carroll TJ, Vize PD., Dev Biol. October 1, 1999; 214 (1): 46-59.        


Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin-B ligands., Helbling PM, Saulnier DM, Robinson V, Christiansen JH, Wilkinson DG, Brändli AW., Dev Dyn. December 1, 1999; 216 (4-5): 361-73.      


Embryonic origins of spleen asymmetry., Patterson KD, Drysdale TA, Krieg PA., Development. January 1, 2000; 127 (1): 167-75.            


The Xenopus tadpole gut: fate maps and morphogenetic movements., Chalmers AD, Slack JM., Development. January 1, 2000; 127 (2): 381-92.                  


Endoderm patterning by the notochord: development of the hypochord in Xenopus., Cleaver O, Seufert DW, Krieg PA., Development. February 1, 2000; 127 (4): 869-79.              


The morphology of heart development in Xenopus laevis., Mohun TJ, Leong LM, Weninger WJ, Sparrow DB., Dev Biol. February 1, 2000; 218 (1): 74-88.                    

???pagination.result.page??? 1 2 3 4 ???pagination.result.next???