Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1651) Expression Attributions Wiki
XB-ANAT-58

Papers associated with somite (and shh)

Limit to papers also referencing gene:
Show all somite papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Mechanical Tensions Regulate Gene Expression in the Xenopus laevis Axial Tissues., Eroshkin FM., Int J Mol Sci. January 10, 2024; 25 (2):         


Targeted search for scaling genes reveals matrixmetalloproteinase 3 as a scaler of the dorsal-ventral pattern in Xenopus laevis embryos., Orlov EE., Dev Cell. January 10, 2022; 57 (1): 95-111.e12.                                


Evolution of Somite Compartmentalization: A View From Xenopus., Della Gaspera B., Front Cell Dev Biol. January 1, 2021; 9 790847.                  


A dual function of FGF signaling in Xenopus left-right axis formation., Schneider I., Development. May 10, 2019; 146 (9):                               


Xenopus slc7a5 is essential for notochord function and eye development., Katada T., Mech Dev. February 1, 2019; 155 48-59.                


Divergent axial morphogenesis and early shh expression in vertebrate prospective floor plate., Kremnyov S., Evodevo. January 31, 2018; 9 4.                    


Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways., Sigg MA., Dev Cell. December 18, 2017; 43 (6): 744-762.e11.      


Sonic hedgehog antagonists reduce size and alter patterning of the frog inner ear., Zarei S., Dev Neurobiol. December 1, 2017; 77 (12): 1385-1400.                


Coordinating heart morphogenesis: A novel role for hyperpolarization-activated cyclic nucleotide-gated (HCN) channels during cardiogenesis in Xenopus laevis., Pitcairn E., Commun Integr Biol. May 10, 2017; 10 (3): e1309488.                            


Hedgehog-dependent E3-ligase Midline1 regulates ubiquitin-mediated proteasomal degradation of Pax6 during visual system development., Pfirrmann T., Proc Natl Acad Sci U S A. September 6, 2016; 113 (36): 10103-8.                    


Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis., Sabillo A., Semin Cell Dev Biol. March 1, 2016; 51 80-91.


G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus., Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.                                          


A Molecular atlas of Xenopus respiratory system development., Rankin SA, Rankin SA., Dev Dyn. January 1, 2015; 244 (1): 69-85.                    


Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression., Shi J., Dev Biol. November 15, 2014; 395 (2): 287-98.                    


Sulf1 influences the Shh morphogen gradient during the dorsal ventral patterning of the neural tube in Xenopus tropicalis., Ramsbottom SA., Dev Biol. July 15, 2014; 391 (2): 207-18.                  


Developmental expression and role of Kinesin Eg5 during Xenopus laevis embryogenesis., Fernández JP., Dev Dyn. April 1, 2014; 243 (4): 527-40.              


Stabilization of speckle-type POZ protein (Spop) by Daz interacting protein 1 (Dzip1) is essential for Gli turnover and the proper output of Hedgehog signaling., Schwend T., J Biol Chem. November 8, 2013; 288 (45): 32809-32820.                


mRNA fluorescence in situ hybridization to determine overlapping gene expression in whole-mount mouse embryos., Neufeld SJ., Dev Dyn. September 1, 2013; 242 (9): 1094-100.    


The cytoskeletal protein Zyxin inhibits Shh signaling during the CNS patterning in Xenopus laevis through interaction with the transcription factor Gli1., Martynova NY., Dev Biol. August 1, 2013; 380 (1): 37-48.                      


Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification., Leung A., Dev Cell. January 28, 2013; 24 (2): 144-58.                                


An intact brachyury function is necessary to prevent spurious axial development in Xenopus laevis., Aguirre CE., PLoS One. January 1, 2013; 8 (1): e54777.                                      


Indian hedgehog signaling is required for proper formation, maintenance and migration of Xenopus neural crest., Agüero TH., Dev Biol. April 15, 2012; 364 (2): 99-113.                    


Short chain dehydrogenase/reductase rdhe2 is a novel retinol dehydrogenase essential for frog embryonic development., Belyaeva OV., J Biol Chem. March 16, 2012; 287 (12): 9061-71.              


Williams Syndrome Transcription Factor is critical for neural crest cell function in Xenopus laevis., Barnett C., Mech Dev. January 1, 2012; 129 (9-12): 324-38.              


The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo., Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.                            


Loss of Xenopus tropicalis EMSY causes impairment of gastrulation and upregulation of p53., Rana AA., N Biotechnol. July 1, 2011; 28 (4): 334-41.                


Hedgehog signaling regulates size of the dorsal aortae and density of the plexus during avian vascular development., Moran CM., Dev Dyn. June 1, 2011; 240 (6): 1354-64.            


A revised model of Xenopus dorsal midline development: differential and separable requirements for Notch and Shh signaling., Peyrot SM., Dev Biol. April 15, 2011; 352 (2): 254-66.                              


Jiraiya attenuates BMP signaling by interfering with type II BMP receptors in neuroectodermal patterning., Aramaki T., Dev Cell. October 19, 2010; 19 (4): 547-61.    


MID1 and MID2 are required for Xenopus neural tube closure through the regulation of microtubule organization., Suzuki M., Development. July 1, 2010; 137 (14): 2329-39.                                                      


B1 SOX coordinate cell specification with patterning and morphogenesis in the early zebrafish embryo., Okuda Y., PLoS Genet. May 6, 2010; 6 (5): e1000936.                


Lymph heart musculature is under distinct developmental control from lymphatic endothelium., Peyrot SM., Dev Biol. March 15, 2010; 339 (2): 429-38.        


Sonic hedgehog is involved in formation of the ventral optic cup by limiting Bmp4 expression to the dorsal domain., Zhao L., Mech Dev. January 1, 2010; 127 (1-2): 62-72.                


Complementary expression of HSPG 6-O-endosulfatases and 6-O-sulfotransferase in the hindbrain of Xenopus laevis., Winterbottom EF., Gene Expr Patterns. March 1, 2009; 9 (3): 166-72.              


Robust stability of the embryonic axial pattern requires a secreted scaffold for chordin degradation., Inomata H., Cell. September 5, 2008; 134 (5): 854-65.                  


Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation., Maves L., Development. September 1, 2007; 134 (18): 3371-82.


The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo., Hou S., Dev Cell. August 1, 2007; 13 (2): 226-41.                      


Hedgehog signaling regulates the amount of hypaxial muscle development during Xenopus myogenesis., Martin BL., Dev Biol. April 15, 2007; 304 (2): 722-34.                


The anuran Bauplan: a review of the adaptive, developmental, and genetic underpinnings of frog and tadpole morphology., Handrigan GR., Biol Rev Camb Philos Soc. February 1, 2007; 82 (1): 1-25.


Smurf1 regulates neural patterning and folding in Xenopus embryos by antagonizing the BMP/Smad1 pathway., Alexandrova EM., Dev Biol. November 15, 2006; 299 (2): 398-410.                      


FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE., Dev Biol. September 1, 2006; 297 (1): 103-17.                    


Early, H+-V-ATPase-dependent proton flux is necessary for consistent left-right patterning of non-mammalian vertebrates., Adams DS., Development. May 1, 2006; 133 (9): 1657-71.              


Cooperative non-cell and cell autonomous regulation of Nodal gene expression and signaling by Lefty/Antivin and Brachyury in Xenopus., Cha YR., Dev Biol. February 15, 2006; 290 (2): 246-64.                        


Subcellular localization and signaling properties of dishevelled in developing vertebrate embryos., Park TJ., Curr Biol. June 7, 2005; 15 (11): 1039-44.                


Regulated expression pattern of gremlin during zebrafish development., Nicoli S., Gene Expr Patterns. April 1, 2005; 5 (4): 539-44.                


Identification of novel genes affecting mesoderm formation and morphogenesis through an enhanced large scale functional screen in Xenopus., Chen JA., Mech Dev. March 1, 2005; 122 (3): 307-31.                                                                                                                      


Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures., Khokha MK., Dev Cell. March 1, 2005; 8 (3): 401-11.                          


Distinct tissue-specificity of three zebrafish ext1 genes encoding proteoglycan modifying enzymes and their relationship to somitic Sonic hedgehog signaling., Siekmann AF., Dev Dyn. February 1, 2005; 232 (2): 498-505.


Xenopus nodal related-1 is indispensable only for left-right axis determination., Toyoizumi R., Int J Dev Biol. January 1, 2005; 49 (8): 923-38.                


R-Spondin2 is a secreted activator of Wnt/beta-catenin signaling and is required for Xenopus myogenesis., Kazanskaya O., Dev Cell. October 1, 2004; 7 (4): 525-34.                          

???pagination.result.page??? 1 2 ???pagination.result.next???