Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Stage Literature (63) Attributions Wiki
XB-STAGE-72

Papers associated with NF stage 58

Limit to papers also referencing gene:
Results 1 - 50 of 63 results

Page(s): 1 2 Next

Sort Newest To Oldest Sort Oldest To Newest

Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis., Dittrich K, Kuttler J, Hassenklöver T, Manzini I., J Comp Neurol. April 1, 2016; 524 (5): 986-98.            


Regeneration of Xenopus laevis spinal cord requires Sox2/3 expressing cells., Muñoz R, Edwards-Faret G, Moreno M, Zuñiga N, Cline H, Larraín J., Dev Biol. December 15, 2015; 408 (2): 229-43.                              


Evidence for an amphibian sixth digit., Hayashi S, Kobayashi T, Yano T, Kamiyama N, Egawa S, Seki R, Takizawa K, Okabe M, Yokoyama H, Tamura K., Zoological Lett. November 26, 2015; 1 17.                  


Gremlin1 induces anterior-posterior limb bifurcations in developing Xenopus limbs but does not enhance limb regeneration., Wang YH, Keenan SR, Lynn J, McEwan JC, Beck CW., Mech Dev. November 1, 2015; 138 Pt 3 256-67.                


Epigenetic modification maintains intrinsic limb-cell identity in Xenopus limb bud regeneration., Hayashi S, Kawaguchi A, Uchiyama I, Kawasumi-Kita A, Kobayashi T, Nishide H, Tsutsumi R, Tsuru K, Inoue T, Ogino H, Agata K, Tamura K, Yokoyama H., Dev Biol. October 15, 2015; 406 (2): 271-82.              


Astrocytes phagocytose focal dystrophies from shortening myelin segments in the optic nerve of Xenopus laevis at metamorphosis., Mills EA, Davis CH, Bushong EA, Boassa D, Kim KY, Ellisman MH, Marsh-Armstrong N., Proc Natl Acad Sci U S A. August 18, 2015; 112 (33): 10509-14.                                          


Changes in gastric sodium-iodide symporter (NIS) activity are associated with differences in thyroid gland sensitivity to perchlorate during metamorphosis., Carr JA, Murali S, Hu F, Goleman WL, Carr DL, Smith EE, Wages M., Gen Comp Endocrinol. August 1, 2015; 219 16-23.              


Global gene expression during early differentiation of Xenopus (Silurana) tropicalis gonad tissues., Haselman JT, Olmstead AW, Degitz SJ., Gen Comp Endocrinol. April 1, 2015; 214 103-13.      


A requirement for hedgehog signaling in thyroid hormone-induced postembryonic intestinal remodeling., Wen L, Hasebe T, Miller TC, Ishizuya-Oka A, Shi YB., Cell Biosci. March 24, 2015; 5 13.            


Generation of BAC transgenic tadpoles enabling live imaging of motoneurons by using the urotensin II-related peptide (ust2b) gene as a driver., Bougerol M, Auradé F, Lambert FM, Le Ray D, Combes D, Thoby-Brisson M, Relaix F, Pollet N, Tostivint H., PLoS One. February 23, 2015; 10 (2): e0117370.                            


Cyp19a1 (aromatase) expression in the Xenopus brain at different developmental stages., Coumailleau P, Kah O., J Neuroendocrinol. February 26, 2014; .          


Trenbolone causes mortality and altered sexual differentiation in Xenopus tropicalis during larval development., Olmstead AW, Kosian PA, Johnson R, Blackshear PE, Haselman J, Blanksma C, Korte JJ, Holcombe GW, Burgess E, Lindberg-Livingston A, Bennett BA, Woodis KK, Degitz SJ., Environ Toxicol Chem. October 1, 2012; 31 (10): 2391-8.


Histone deacetylases are required for amphibian tail and limb regeneration but not development., Taylor AJ, Beck CW., Mech Dev. September 1, 2012; 129 (9-12): 208-18.            


Effects of fluoride on expression of bone-specific genes in developing Xenopus laevis larvae., Nair M, Belak ZR, Ovsenek N., Biochem Cell Biol. August 1, 2011; 89 (4): 377-86.


Studies on Xenopus laevis intestine reveal biological pathways underlying vertebrate gut adaptation from embryo to adult., Heimeier RA, Das B, Buchholz DR, Fiorentino M, Shi YB., Genome Biol. January 1, 2010; 11 (5): R55.                    


The keratin-related Ouroboros proteins function as immune antigens mediating tail regression in Xenopus metamorphosis., Mukaigasa K, Hanasaki A, Maéno M, Fujii H, Hayashida S, Itoh M, Kobayashi M, Tochinai S, Hatta M, Iwabuchi K, Taira M, Onoé K, Izutsu Y., Proc Natl Acad Sci U S A. October 27, 2009; 106 (43): 18309-14.      


Vestibular asymmetry as the cause of idiopathic scoliosis: a possible answer from Xenopus., Lambert FM, Malinvaud D, Glaunès J, Bergot C, Straka H, Vidal PP., J Neurosci. October 7, 2009; 29 (40): 12477-83.      


Identification of genes associated with regenerative success of Xenopus laevis hindlimbs., Pearl EJ, Barker D, Day RC, Beck CW., BMC Dev Biol. July 28, 2008; 8 66.              


Wnt/beta-catenin signaling regulates vertebrate limb regeneration., Kawakami Y, Rodriguez Esteban C, Raya M, Kawakami H, Martí M, Dubova I, Izpisúa Belmonte JC., Genes Dev. December 1, 2006; 20 (23): 3232-7.    


Expression of sodium-iodide symporter mRNA in the thyroid gland of Xenopus laevis tadpoles: developmental expression, effects of antithyroidal compounds, and regulation by TSH., Opitz R, Trubiroha A, Lorenz C, Lutz I, Hartmann S, Blank T, Braunbeck T, Kloas W., J Endocrinol. July 1, 2006; 190 (1): 157-70.


Inhibition of metamorphosis in tadpoles of Xenopus laevis exposed to polybrominated diphenyl ethers (PBDEs)., Balch GC, Vélez-Espino LA, Sweet C, Alaee M, Metcalfe CD., Chemosphere. June 1, 2006; 64 (2): 328-38.


One of the duplicated matrix metalloproteinase-9 genes is expressed in regressing tail during anuran metamorphosis., Fujimoto K, Nakajima K, Yaoita Y., Dev Growth Differ. May 1, 2006; 48 (4): 223-41.            


Programmed cell death in Xenopus laevis spinal cord, tail and other tissues, prior to, and during, metamorphosis., Estabel J, Mercer A, König N, Exbrayat JM., Life Sci. November 7, 2003; 73 (25): 3297-306.


Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate., Beck CW, Christen B, Slack JM., Dev Cell. September 1, 2003; 5 (3): 429-39.            


Thyroid hormone-upregulated expression of Musashi-1 is specific for progenitor cells of the adult epithelium during amphibian gastrointestinal remodeling., Ishizuya-Oka A, Shimizu K, Sakakibara S, Okano H, Ueda S., J Cell Sci. August 1, 2003; 116 (Pt 15): 3157-64.          


Platelet-derived growth factor signaling as a cue of the epithelial-mesenchymal interaction required for anuran skin metamorphosis., Utoh R, Shigenaga S, Watanabe Y, Yoshizato K., Dev Dyn. June 1, 2003; 227 (2): 157-69.              


Ontogenic emergence and localization of larval skin antigen molecule recognized by adult T cells of Xenopus laevis: Regulation by thyroid hormone during metamorphosis., Watanabe M, Ohshima M, Morohashi M, Maéno M, Izutsu Y., Dev Growth Differ. February 1, 2003; 45 (1): 77-84.        


Metamorphosis-dependent transcriptional regulation of xak-c, a novel Xenopus type I keratin gene., Watanabe Y, Tanaka R, Kobayashi H, Utoh R, Suzuki K, Obara M, Yoshizato K., Dev Dyn. December 1, 2002; 225 (4): 561-70.                


Rod sensitivity during Xenopus development., Xiong WH, Yau KW., J Gen Physiol. December 1, 2002; 120 (6): 817-27.                    


How a highly complex three-dimensional network of blood vessels regresses: the gill blood vascular system of tadpoles of Xenopus during metamorphosis. A SEM study on microvascular corrosion casts., Minnich B, Bartel H, Lametschwandtner A., Microvasc Res. November 1, 2002; 64 (3): 425-37.


Requirement for matrix metalloproteinase stromelysin-3 in cell migration and apoptosis during tissue remodeling in Xenopus laevis., Ishizuya-Oka A, Li Q, Amano T, Damjanovski S, Ueda S, Shi YB., J Cell Biol. September 4, 2000; 150 (5): 1177-88.                      


Regression of blood vessels in the ventral velum of Xenopus laevis Daudin during metamorphosis: light microscopic and transmission electron microscopic study., Bartel H, Lametschwandtner A., J Anat. August 1, 2000; 197 ( Pt 2) 157-66.


Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration in Xenopus laevis hindlimbs., Wolfe AD, Nye HL, Cameron JA., Dev Dyn. August 1, 2000; 218 (4): 681-97.        


An immunohistochemical and morphometric analysis of insulin, insulin-like growth factor I, glucagon, somatostatin, and PP in the development of the gastro-entero-pancreatic system of Xenopus laevis., Maake C, Hanke W, Reinecke M., Gen Comp Endocrinol. May 1, 1998; 110 (2): 182-95.                


Multiple digit formation in Xenopus limb bud recombinants., Yokoyama H, Endo T, Tamura K, Tamura K, Yajima H, Ide H., Dev Biol. April 1, 1998; 196 (1): 1-10.          


Metamorphosis-associated and region-specific expression of calbindin gene in the posterior intestinal epithelium of Xenopus laevis larva., Amano T, Noro N, Kawabata H, Kobayashi Y, Yoshizato K., Dev Growth Differ. April 1, 1998; 40 (2): 177-88.                


Androgen-induced proliferation in the developing larynx of Xenopus laevis is regulated by thyroid hormone., Cohen MA, Kelley DB., Dev Biol. August 25, 1996; 178 (1): 113-23.                


Immunohistochemical investigation of gamma-aminobutyric acid ontogeny and transient expression in the central nervous system of Xenopus laevis tadpoles., Barale E, Fasolo A, Girardi E, Artero C, Franzoni MF., J Comp Neurol. April 29, 1996; 368 (2): 285-94.


Regionally regulated conversion of protein expression in the skin during anuran metamorphosis., Kobayashi H, Sato H, Yoshizato K., J Exp Zool. February 15, 1996; 274 (3): 187-92.


Transient expression of stromelysin-3 mRNA in the amphibian small intestine during metamorphosis., Ishizuya-Oka A, Ueda S, Shi YB, Shi YB., Cell Tissue Res. February 1, 1996; 283 (2): 325-9.


Isoform transition of contractile proteins related to muscle remodeling with an axial gradient during metamorphosis in Xenopus laevis., Nishikawa A, Hayashi H., Dev Biol. September 1, 1994; 165 (1): 86-94.                      


Adult precursor cells in the tail epidermis of Xenopus tadpoles., Kinoshita T, Sasaki F., Histochemistry. July 1, 1994; 101 (6): 391-6.


Expression of magainin antimicrobial peptide genes in the developing granular glands of Xenopus skin and induction by thyroid hormone., Reilly DS, Tomassini N, Zasloff M., Dev Biol. March 1, 1994; 162 (1): 123-33.          


The quantitative relationship between olfactory axons and mitral/tufted cells in developing Xenopus with partially deafferented olfactory bulbs., Byrd CA, Burd GD., J Neurobiol. September 1, 1993; 24 (9): 1229-42.


The Critical Period for Experience-dependent Plasticity in a System of Binocular Visual Connections in Xenopus laevis: Its Extension by Dark-rearing., Grant S, Dawes EA, Keating MJ., Eur J Neurosci. October 1, 1992; 4 (1): 37-45.


Development of the olfactory nerve in the clawed frog, Xenopus laevis: II. Effects of hypothyroidism., Burd GD., J Comp Neurol. January 15, 1992; 315 (3): 255-63.


Development of the olfactory bulb in the clawed frog, Xenopus laevis: a morphological and quantitative analysis., Byrd CA, Burd GD., J Comp Neurol. December 1, 1991; 314 (1): 79-90.


Developmental and thyroid hormone-dependent regulation of pancreatic genes in Xenopus laevis., Shi YB, Shi YB, Brown DD., Genes Dev. July 1, 1990; 4 (7): 1107-13.                


B-lymphocyte populations in Xenopus laevis., Hadji-Azimi I, Coosemans V, Canicatti C., Dev Comp Immunol. January 1, 1990; 14 (1): 69-84.


The expression of epidermal antigens in Xenopus laevis., Itoh K, Yamashita A, Kubota HY., Development. September 1, 1988; 104 (1): 1-14.                        

Page(s): 1 2 Next