Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
Summary Anatomy Item Literature (448) Expression Attributions Wiki
XB-ANAT-728

Papers associated with olfactory system

Limit to papers also referencing gene:
Results 1 - 50 of 448 results

Page(s): 1 2 3 4 5 6 7 8 9 Next

Sort Newest To Oldest Sort Oldest To Newest

Distinct interhemispheric connectivity at the level of the olfactory bulb emerges during Xenopus laevis metamorphosis., Weiss L., Cell Tissue Res. December 1, 2021; 386 (3): 491-511.            


The role of cell lineage in the development of neuronal circuitry and function., Hartenstein V., Dev Biol. January 1, 2021; 475 165-180.


Olfactory subsystems in the peripheral olfactory organ of anuran amphibians., Jungblut LD., Cell Tissue Res. January 1, 2021; 383 (1): 289-299.


Axon terminals control endolysosome diffusion to support synaptic remodelling., Terni B., Life Sci Alliance. January 1, 2021; 4 (8):                   


Resolving different presynaptic activity patterns within single olfactory glomeruli of Xenopus laevis larvae., Topci R., Sci Rep. January 1, 2021; 11 (1): 14258.                              


Nonanal modulates oviposition preference in female Helicoverpa assulta (Lepidoptera: Noctuidae) via the activation of peripheral neurons., Wang C., Pest Manag Sci. September 1, 2020; 76 (9): 3159-3167.          


Embryonic Epidermal Lectins in Three Amphibian Species, Rana ornativentris, Bufo japonicus formosus, and Cynops pyrrhogaster., Nagata S., Zoolog Sci. August 1, 2020; 37 (4): 338-345.            


Differential expression of foxo genes during embryonic development and in adult tissues of Xenopus tropicalis., Zheng L., Gene Expr Patterns. January 1, 2020; 35 119091.              


The neurodevelopmental disorder risk gene DYRK1A is required for ciliogenesis and control of brain size in Xenopus embryos., Willsey HR., Development. January 1, 2020; 147 (21):                             


Chemical modification of proteins by insertion of synthetic peptides using tandem protein trans-splicing., Khoo KK., Nat Commun. January 1, 2020; 11 (1): 2284.            


Dynamic expression of MMP28 during cranial morphogenesis., Gouignard N., Philos Trans R Soc Lond B Biol Sci. January 1, 2020; 375 (1809): 20190559.


Bcl11b controls odorant receptor class choice in mice., Enomoto T., Commun Biol. January 1, 2019; 2 296.                


Tight temporal coupling between synaptic rewiring of olfactory glomeruli and the emergence of odor-guided behavior in Xenopus tadpoles., Terni B., J Comp Neurol. December 1, 2017; 525 (17): 3769-3783.


Down syndrome cell adhesion molecule (DSCAM) is important for early development in Xenopus tropicalis., Morales Diaz HD., Genesis. October 31, 2017; .        


Specific induction of cranial placode cells from Xenopus ectoderm by modulating the levels of BMP, Wnt and FGF signaling., Watanabe T., Genesis. October 31, 2017; .


Quantitative comparative analysis of the nasal chemosensory organs of anurans during larval development and metamorphosis highlights the relative importance of chemosensory subsystems in the group., Jungblut LD., J Morphol. September 1, 2017; 278 (9): 1208-1219.


Sequence similarity and functional comparisons of pheromone receptor orthologs in two closely related Helicoverpa species., Jiang XJ., Insect Biochem Mol Biol. May 30, 2017; .


Coordinated shift of olfactory amino acid responses and V2R expression to an amphibian water nose during metamorphosis., Syed AS., Cell Mol Life Sci. January 1, 2017; 74 (9): 1711-1719.


Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis., Moreno N., Front Neuroanat. January 1, 2017; 11 24.                        


Neuronal degeneration and regeneration induced by axotomy in the olfactory epithelium of Xenopus laevis., Cervino AS., Dev Neurobiol. January 1, 2017; 77 (11): 1308-1320.                    


The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus., Zhu X., Mech Dev. January 1, 2017; 147 28-36.              


Functional Reintegration of Sensory Neurons and Transitional Dendritic Reduction of Mitral/Tufted Cells during Injury-Induced Recovery of the Larval Xenopus Olfactory Circuit., Hawkins SJ., Front Cell Neurosci. January 1, 2017; 11 380.            


Frog Virus 3 dissemination in the brain of tadpoles, but not in adult Xenopus, involves blood brain barrier dysfunction., De Jesús Andino F., Sci Rep. September 28, 2016; 6 22508.                            


Metabolomic approach for identifying and visualizing molecular tissue markers in tadpoles of Xenopus tropicalis by mass spectrometry imaging., Goto-Inoue N., Biol Open. September 15, 2016; 5 (9): 1252-9.            


Metamorphic remodeling of the olfactory organ of the African clawed frog, Xenopus laevis., Dittrich K., J Comp Neurol. April 1, 2016; 524 (5): 986-98.            


Neural regeneration dynamics of Xenopus laevis olfactory epithelium after zinc sulfate-induced damage., Frontera JL., J Chem Neuroanat. January 1, 2016; 77 1-9.


Recording Temperature-induced Neuronal Activity through Monitoring Calcium Changes in the Olfactory Bulb of Xenopus laevis., Brinkmann A., J Vis Exp. January 1, 2016; (112):   


Noggin 1 overexpression in retinal progenitors affects bipolar cell generation., Messina A., Int J Dev Biol. January 1, 2016; 60 (4-6): 151-7.        


Olfactory experiences dynamically regulate plasticity of dendritic spines in granule cells of Xenopus tadpoles in vivo., Zhang L., Sci Rep. January 1, 2016; 6 35009.        


Ca(2+)-BK channel clusters in olfactory receptor neurons and their role in odour coding., Bao G., Eur J Neurosci. December 1, 2015; 42 (11): 2985-95.                      


Evolutionary Conservation of the Early Axon Scaffold in the Vertebrate Brain., Ware M., Dev Dyn. October 1, 2015; 244 (10): 1202-14.          


Ferritin H subunit gene is specifically expressed in melanophore precursor-derived white pigment cells in which reflecting platelets are formed from stage II melanosomes in the periodic albino mutant of Xenopus laevis., Fukuzawa T., Cell Tissue Res. September 1, 2015; 361 (3): 733-44.                  


An endocannabinoid system is present in the mouse olfactory epithelium but does not modulate olfaction., Hutch CR., Neuroscience. August 6, 2015; 300 539-53.


Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms., Mundell NA., J Comp Neurol. August 1, 2015; 523 (11): 1639-63.                      


Integrating temperature with odor processing in the olfactory bulb., Kludt E., J Neurosci. May 20, 2015; 35 (20): 7892-902.


Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation., Pai VP., J Neurosci. March 11, 2015; 35 (10): 4366-85.                    


Brain-derived neurotrophic factor (BDNF) expression in normal and regenerating olfactory epithelium of Xenopus laevis., Frontera JL., Ann Anat. March 1, 2015; 198 41-8.


Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development., Yan B., Dev Dyn. February 1, 2015; 244 (2): 181-210.                          


A gene expression map of the larval Xenopus laevis head reveals developmental changes underlying the evolution of new skeletal elements., Square T., Dev Biol. January 15, 2015; 397 (2): 293-304.                                            


Methylmercury exposure during early Xenopus laevis development affects cell proliferation and death but not neural progenitor specification., Huyck RW., Neurotoxicol Teratol. January 1, 2015; 47 102-13.                


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM., Front Aging Neurosci. January 1, 2015; 7 62.                                            


Dual processing of sulfated steroids in the olfactory system of an anuran amphibian., Sansone A., Front Cell Neurosci. January 1, 2015; 9 373.            


In Vivo Study of Dynamics and Stability of Dendritic Spines on Olfactory Bulb Interneurons in Xenopus laevis Tadpoles., Huang YB., PLoS One. January 1, 2015; 10 (10): e0140752.            


A Database of microRNA Expression Patterns in Xenopus laevis., Ahmed A., PLoS One. January 1, 2015; 10 (10): e0138313.          


Facile functional analysis of insect odorant receptors expressed in the fruit fly: validation with receptors from taxonomically distant and closely related species., Ueira-Vieira C., Cell Mol Life Sci. December 1, 2014; 71 (23): 4675-80.


Expression of G proteins in the olfactory receptor neurons of the newt Cynops pyrrhogaster: their unique projection into the olfactory bulbs., Nakada T., J Comp Neurol. October 15, 2014; 522 (15): 3501-19.


Requirement for Drosophila SNMP1 for rapid activation and termination of pheromone-induced activity., Li Z., PLoS Genet. September 1, 2014; 10 (9): e1004600.            


Narrow tuning of an odorant receptor to plant volatiles in Spodoptera exigua (Hübner)., Liu C., Insect Mol Biol. August 1, 2014; 23 (4): 487-96.


Fez family transcription factors: controlling neurogenesis and cell fate in the developing mammalian nervous system., Eckler MJ., Bioessays. August 1, 2014; 36 (8): 788-97.


Trpc2 is expressed in two olfactory subsystems, the main and the vomeronasal system of larval Xenopus laevis., Sansone A., J Exp Biol. July 1, 2014; 217 (Pt 13): 2235-8.    

Page(s): 1 2 3 4 5 6 7 8 9 Next