Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (704) Expression Attributions Wiki
XB-ANAT-772

Papers associated with optic tectum (and tecta.2)

Limit to papers also referencing gene:
Show all optic tectum papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Epigenetic regulation of GABAergic differentiation in the developing brain., Gao J., Front Cell Neurosci. January 1, 2022; 16 988732.            


Early Developmental Exposure to Fluoxetine and Citalopram Results in Different Neurodevelopmental Outcomes., Liu K., Neuroscience. July 15, 2021; 467 110-121.


Precisely controlled visual stimulation to study experience-dependent neural plasticity in Xenopus tadpoles., Hiramoto M., STAR Protoc. January 8, 2021; 2 (1): 100252.                


Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis., Prater CM., Horm Behav. April 1, 2020; 120 104707.


Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors., McKeown CR., Development. October 24, 2019; 146 (20):             


Neuroendocrine modulation of predator avoidance/prey capture tradeoffs: Role of tectal NPY2R receptors., Islam R., Gen Comp Endocrinol. October 1, 2019; 282 113214.


Microvascular anatomy of the brain of the adult pipid frog, Xenopus laevis (Daudin): A scanning electron microscopic study of vascular corrosion casts., Lametschwandtner A., J Morphol. July 1, 2018; 279 (7): 950-969.                                                                                              


Role of the visual experience-dependent nascent proteome in neuronal plasticity., Liu HH., Elife. February 7, 2018; 7                     


An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum., Hamodi AS., Elife. November 23, 2016; 5                   


Experience-dependent plasticity of excitatory and inhibitory intertectal inputs in Xenopus tadpoles., Gambrill AC., J Neurophysiol. November 1, 2016; 116 (5): 2281-2297.


HDAC3 But not HDAC2 Mediates Visual Experience-Dependent Radial Glia Proliferation in the Developing Xenopus Tectum., Gao J., Front Cell Neurosci. May 6, 2016; 10 221.              


An in vivo screen to identify candidate neurogenic genes in the developing Xenopus visual system., Bestman JE., Dev Biol. December 15, 2015; 408 (2): 269-91.                    


Subcellular Localization of Class I Histone Deacetylases in the Developing Xenopus tectum., Guo X., Front Cell Neurosci. September 23, 2015; 9 510.                  


HDAC1 Regulates the Proliferation of Radial Glial Cells in the Developing Xenopus Tectum., Tao Y., PLoS One. March 16, 2015; 10 (3): e0120118.                


FMRP regulates neurogenesis in vivo in Xenopus laevis tadpoles., Faulkner RL., eNeuro. January 1, 2015; 2 (1): e0055.                


Clonal relationships impact neuronal tuning within a phylogenetically ancient vertebrate brain structure., Muldal AM., Curr Biol. August 18, 2014; 24 (16): 1929-33.        


Neurogenesis is required for behavioral recovery after injury in the visual system of Xenopus laevis., McKeown CR., J Comp Neurol. July 1, 2013; 521 (10): 2262-78.              


Global hyper-synchronous spontaneous activity in the developing optic tectum., Imaizumi K., Sci Rep. January 1, 2013; 3 1552.            


Expression patterns of Ephs and ephrins throughout retinotectal development in Xenopus laevis., Higenell V., Dev Neurobiol. April 1, 2012; 72 (4): 547-63.              


Extracellular Engrailed participates in the topographic guidance of retinal axons in vivo., Wizenmann A., Neuron. November 12, 2009; 64 (3): 355-366.


Nitric oxide in the retinotectal system: a signal but not a retrograde messenger during map refinement and segregation., Rentería RC., J Neurosci. August 15, 1999; 19 (16): 7066-76.          


Effects of choline and other nicotinic agonists on the tectum of juvenile and adult Xenopus frogs: a patch-clamp study., Titmus MJ., Neuroscience. January 1, 1999; 91 (2): 753-69.


Xefiltin, a Xenopus laevis neuronal intermediate filament protein, is expressed in actively growing optic axons during development and regeneration., Zhao Y., J Neurobiol. November 20, 1997; 33 (6): 811-24.                  


Xenopus Brn-3.0, a POU-domain gene expressed in the developing retina and tectum. Not regulated by innervation., Hirsch N., Invest Ophthalmol Vis Sci. April 1, 1997; 38 (5): 960-9.


The contribution of protein kinases to plastic events in the superior colliculus., McCrossan D., Prog Neuropsychopharmacol Biol Psychiatry. April 1, 1997; 21 (3): 487-505.


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S., Dev Biol. October 10, 1996; 179 (1): 102-15.              


Polysialylated neural cell adhesion molecule and plasticity of ipsilateral connections in Xenopus tectum., Williams DK., Neuroscience. January 1, 1996; 70 (1): 277-85.


Absence of topography in precociously innervated tecta., Chien CB., Development. August 1, 1995; 121 (8): 2621-31.


The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis., Zhao Y., J Neurosci. June 1, 1995; 15 (6): 4629-40.                      


Developmental changes in melanin-concentrating hormone in Rana temporaria., Francis K., Gen Comp Endocrinol. May 1, 1995; 98 (2): 157-65.    


Brain regions and encephalization in anurans: adaptation or stability?, Taylor GM., Brain Behav Evol. January 1, 1995; 45 (2): 96-109.


Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission., O'Rourke NA., Neuron. April 1, 1994; 12 (4): 921-34.


Ultrastructure of the crossed isthmotectal projection in Xenopus frogs., Udin SB., J Comp Neurol. February 8, 1990; 292 (2): 246-54.


The directed growth of retinal axons towards surgically transposed tecta in Xenopus; an examination of homing behaviour by retinal ganglion cell axons., Taylor JS., Development. January 1, 1990; 108 (1): 147-58.


The induction of an anomalous ipsilateral retinotectal projection in Xenopus laevis., Taylor JS., Anat Embryol (Berl). January 1, 1990; 181 (4): 393-404.


The ultrastructural organization of the isthmic nucleus in Xenopus., McCart R., Anat Embryol (Berl). January 1, 1988; 177 (4): 325-30.


The effects of tectal lesion on the survival of isthmic neurones in Xenopus., Straznicky C., Development. December 1, 1987; 101 (4): 869-76.


Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies., Takagi S., Dev Biol. July 1, 1987; 122 (1): 90-100.                    


A projection from the mesencephalic tegmentum to the nucleus isthmi in the frogs, Rana pipiens and Acris crepitans., Udin SB., Neuroscience. May 1, 1987; 21 (2): 631-7.


The discontinuous visual projections on the Xenopus optic tectum following regeneration after unilateral nerve section., Willshaw DJ., J Embryol Exp Morphol. June 1, 1986; 94 121-37.


Factors guiding regenerating retinotectal fibres in the frog Xenopus laevis., Fawcett JW., J Embryol Exp Morphol. December 1, 1985; 90 233-50.


Visualization of HRP-filled axons in unsectioned, flattened optic tecta of frogs., Udin SB., J Neurosci Methods. December 1, 1983; 9 (4): 283-5.


Pathways of Xenopus optic fibres regenerating from normal and compound eyes under various conditions., Gaze RM., J Embryol Exp Morphol. February 1, 1983; 73 17-38.


Abnormal visual input leads to development of abnormal axon trajectories in frogs., Udin SB., Nature. January 27, 1983; 301 (5898): 336-8.


The development of connections between the isthmic nucleus and the tectum in Xenopus and Limnodynastes tadpoles., Dann JF., Neurosci Lett. November 30, 1982; 33 (2): 107-13.


Interactions between compound and normal eye projections in dually innervated tectum: a study of optic nerve regeneration in Xenopus., Straznicky C., J Embryol Exp Morphol. December 1, 1981; 66 159-74.


Mapping retinal projections from double nasal and double temporal compound eyes to dually innervated tectum in Xenopus., Straznicky C., Dev Biol. April 1, 1981; 227 (2): 139-52.


Spreading of hemiretinal projections in the ipsilateral tectum following unilateral enucleation: a study of optic nerve regeneration in Xenopus with one compound eye., Straznicky C., J Embryol Exp Morphol. February 1, 1981; 61 259-76.


Regeneration of optic nerve fibres from a compound eye to both tecta in Xenopus: evidence relating to the state of specification of the eye and the tectum., Gaze RM., J Embryol Exp Morphol. December 1, 1980; 60 125-40.


Regeneration of an abnormal ipsilateral visuotectal projection in Xenopus is delayed by the presence of optic fibres from the other eye., Straznicky C., J Embryol Exp Morphol. June 1, 1980; 57 129-41.

???pagination.result.page??? 1 2 ???pagination.result.next???