Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (704) Expression Attributions Wiki
XB-ANAT-772

Papers associated with

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Bi-allelic ACBD6 variants lead to a neurodevelopmental syndrome with progressive and complex movement disorders., Kaiyrzhanov R., Brain. April 4, 2024; 147 (4): 1436-1456.                            


BRCA1 and ELK-1 regulate neural progenitor cell fate in the optic tectum in response to visual experience in Xenopus laevis tadpoles., Huang LC., Proc Natl Acad Sci U S A. January 16, 2024; 121 (3): e2316542121.                        


Characterization of Na+ currents regulating intrinsic excitability of optic tectal neurons., Thompson AC., Life Sci Alliance. January 1, 2024; 7 (1):                         


Functional odor map heterogeneity is based on multifaceted glomerular connectivity in larval Xenopus olfactory bulb., Offner T., iScience. September 15, 2023; 26 (9): 107518.                                  


β-Catenin and SOX2 Interaction Regulate Visual Experience-Dependent Cell Homeostasis in the Developing Xenopus Thalamus., Gao J., Int J Mol Sci. September 2, 2023; 24 (17):                 


The effects of the NMDAR co-agonist D-serine on the structure and function of optic tectal neurons in the developing visual system., Chorghay Z., Sci Rep. August 17, 2023; 13 (1): 13383.        


BDNF signaling in correlation-dependent structural plasticity in the developing visual system., Kutsarova E., PLoS Biol. April 1, 2023; 21 (4): e3002070.          


Sub-chronic administration of fluoxetine does not alter prey-capture or predator avoidance behaviors in adult South African clawed frogs (Xenopus laevis)., Menon N., Behav Brain Res. March 28, 2023; 442 114317.


Neuronal membrane proteasomes regulate neuronal circuit activity in vivo and are required for learning-induced behavioral plasticity., He HY., Proc Natl Acad Sci U S A. January 17, 2023; 120 (3): e2216537120.                    


An Algorithm Based on a Cable-Nernst Planck Model Predicting Synaptic Activity throughout the Dendritic Arbor with Micron Specificity., Guerrier C., Neuroinformatics. January 1, 2023; 21 (1): 207-220.


A New Technical Approach for Cross-species Examination of Neuronal Wiring and Adult Neuron-glia Functions., Edwards-Faret G., Neuroscience. January 1, 2023; 508 40-51.


Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain., Raj S., PLoS One. January 1, 2023; 18 (6): e0287858.                


Xenopus retinal ganglion cell axon extension is unaffected by 5-HT 1B/D receptor activation during visual system development., Basakis P., MicroPubl Biol. January 1, 2023; 2023


Functions of block of proliferation 1 during anterior development in Xenopus laevis., Gärtner C., PLoS One. August 2, 2022; 17 (8): e0273507.                        


A Focal Impact Model of Traumatic Brain Injury in Xenopus Tadpoles Reveals Behavioral Alterations, Neuroinflammation, and an Astroglial Response., Spruiell Eldridge SL., Int J Mol Sci. July 8, 2022; 23 (14):                         


DSCAM is differentially patterned along the optic axon pathway in the developing Xenopus visual system and guides axon termination at the target., Santos RA., Neural Dev. April 15, 2022; 17 (1): 5.              


Topographic map formation and the effects of NMDA receptor blockade in the developing visual system., Li VJ., Proc Natl Acad Sci U S A. February 22, 2022; 119 (8):                                   


Proteomic screen reveals diverse protein transport between connected neurons in the visual system., Schiapparelli LM., Cell Rep. January 25, 2022; 38 (4): 110287.                                  


Bulk Dye Loading for In Vivo Calcium Imaging of Visual Responses in Populations of Xenopus Tectal Neurons., Hogg PW., Cold Spring Harb Protoc. January 4, 2022; 2022 (1):


The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways., Schreiner C., Front Cell Dev Biol. January 1, 2022; 10 777121.                        


Epigenetic regulation of GABAergic differentiation in the developing brain., Gao J., Front Cell Neurosci. January 1, 2022; 16 988732.            


Electrophysiological Approaches to Studying Normal and Abnormal Retinotectal Circuit Development in the Xenopus Tadpole., Pratt KG., Cold Spring Harb Protoc. November 1, 2021; 2021 (11):


Tetrode Recording in the Xenopus laevis Visual System Using Multichannel Glass Electrodes., Hiramoto M., Cold Spring Harb Protoc. November 1, 2021; 2021 (11):


Neurophysiological and Behavioral Analysis in Xenopus., Szaro BG., Cold Spring Harb Protoc. November 1, 2021; 2021 (11):


Sodium-calcium exchanger mediates sensory-evoked glial calcium transients in the developing retinotectal system., Benfey NJ., Cell Rep. October 5, 2021; 37 (1): 109791.                      


Conserved role of the urotensin II receptor 4 signalling pathway to control body straightness in a tetrapod., Alejevski F., Open Biol. August 1, 2021; 11 (8): 210065.                                    


Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis., Gore SV., Elife. July 20, 2021; 10           


Early Developmental Exposure to Fluoxetine and Citalopram Results in Different Neurodevelopmental Outcomes., Liu K., Neuroscience. July 15, 2021; 467 110-121.


The role of cell lineage in the development of neuronal circuitry and function., Hartenstein V., Dev Biol. July 1, 2021; 475 165-180.


Application of Recombinant Rabies Virus to Xenopus Tadpole Brain., Faulkner RL., eNeuro. June 7, 2021; 8 (4):         


Electrophysiological Recording for Study of Xenopus Retinotectal Circuitry., Luo Y., Cold Spring Harb Protoc. June 1, 2021; 2021 (6):


Microglial trogocytosis and the complement system regulate axonal pruning in vivo., Lim TK., Elife. March 16, 2021; 10                     


Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis., Edwards-Faret G., Neural Dev. February 2, 2021; 16 (1): 2.                              


Xenopus leads the way: Frogs as a pioneering model to understand the human brain., Exner CRT., Genesis. February 1, 2021; 59 (1-2): e23405.          


Precisely controlled visual stimulation to study experience-dependent neural plasticity in Xenopus tadpoles., Hiramoto M., STAR Protoc. January 8, 2021; 2 (1): 100252.                


Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis., Morona R., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.                                                                


Multi-glomerular projection of single olfactory receptor neurons is conserved among amphibians., Weiss L., J Comp Neurol. September 1, 2020; 528 (13): 2239-2253.


Postsynaptic and Presynaptic NMDARs Have Distinct Roles in Visual Circuit Development., Kesner P., Cell Rep. July 28, 2020; 32 (4): 107955.                                            


Relationship between oxygen consumption and neuronal activity in a defined neural circuit., Özugur S., BMC Biol. July 3, 2020; 18 (1): 76.          


NMDARs Translate Sequential Temporal Information into Spatial Maps., Hiramoto M., iScience. June 26, 2020; 23 (6): 101130.                


A Simple and Efficient Method for Visualizing Individual Cells in vivo by Cre-Mediated Single-Cell Labeling by Electroporation (CREMSCLE)., Schohl A., Front Neural Circuits. June 16, 2020; 14 47.                        


Stentian structural plasticity in the developing visual system., Rahman TN., Proc Natl Acad Sci U S A. May 19, 2020; 117 (20): 10636-10638.    


An Innate Color Preference Displayed by Xenopus Tadpoles Is Persistent and Requires the Tegmentum., Hunt JE., Front Behav Neurosci. May 12, 2020; 14 71.        


Lhx2/9 and Etv1 Transcription Factors have Complementary roles in Regulating the Expression of Guidance Genes slit1 and sema3a., Yang JJ., Neuroscience. May 10, 2020; 434 66-82.


Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis., Prater CM., Horm Behav. April 1, 2020; 120 104707.


Axonal precursor miRNAs hitchhike on endosomes and locally regulate the development of neural circuits., Corradi E., EMBO J. March 16, 2020; 39 (6): e102513.                            


d-Glucuronolactone attenuates para-xylene-induced defects in neuronal development and plasticity in Xenopus tectum in vivo., Liao Y., Toxicology. January 30, 2020; 430 152341.


On-Site Ribosome Remodeling by Locally Synthesized Ribosomal Proteins in Axons., Shigeoka T., Cell Rep. December 10, 2019; 29 (11): 3605-3619.e10.                


Nutrient restriction causes reversible G2 arrest in Xenopus neural progenitors., McKeown CR., Development. October 24, 2019; 146 (20):             


Neuroendocrine modulation of predator avoidance/prey capture tradeoffs: Role of tectal NPY2R receptors., Islam R., Gen Comp Endocrinol. October 1, 2019; 282 113214.

???pagination.result.page??? 1 2 3 4 5 6 7 8 9 10 11 ???pagination.result.next???