Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (140) Expression Attributions Wiki
XB-ANAT-78

Papers associated with prechordal plate

Limit to papers also referencing gene:
???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

The effect of calcitonin on the prechordal mesoderm, neural plate and neural crest of Xenopus embryos., Burgess AM., J Anat. January 1, 1985; 140 ( Pt 1) 49-55.


[Distribution of differentiation potentials and the conditions for their realization in the amphibian neuroectoderm]., Golubeva ON., Ontogenez. January 1, 1986; 17 (6): 648-54.


Expression of an engrailed-related protein is induced in the anterior neural ectoderm of early Xenopus embryos., Brivanlou AH., Development. July 1, 1989; 106 (3): 611-7.                  


Mesodermal cell migration during Xenopus gastrulation., Winklbauer R., Dev Biol. November 1, 1990; 142 (1): 155-68.


Region-specific neural induction of an engrailed protein by anterior notochord in Xenopus., Hemmati-Brivanlou A., Science. November 9, 1990; 250 (4982): 800-2.


Overexpression of a homeodomain protein confers axis-forming activity to uncommitted Xenopus embryonic cells., Cho KW., Cell. April 5, 1991; 65 (1): 55-64.


Homeogenetic neural induction in Xenopus., Servetnick M., Dev Biol. September 1, 1991; 147 (1): 73-82.      


Induction of anteroposterior neural pattern in Xenopus by planar signals., Doniach T., Dev Suppl. January 1, 1992; 183-93.


Goosecoid and the organizer., De Roberts EM., Dev Suppl. January 1, 1992; 167-71.


The LIM domain-containing homeo box gene Xlim-1 is expressed specifically in the organizer region of Xenopus gastrula embryos., Taira M., Genes Dev. March 1, 1992; 6 (3): 356-66.              


Motile behavior and protrusive activity of migratory mesoderm cells from the Xenopus gastrula., Winklbauer R., Dev Biol. April 1, 1992; 150 (2): 335-51.


Integrin alpha subunit mRNAs are differentially expressed in early Xenopus embryos., Whittaker CA., Development. April 1, 1993; 117 (4): 1239-49.          


The homeobox gene goosecoid and the origin of organizer cells in the early chick blastoderm., Izpisúa-Belmonte JC., Cell. August 27, 1993; 74 (4): 645-59.


Xenopus goosecoid: a gene expressed in the prechordal plate that has dorsalizing activity., Steinbeisser H., C R Acad Sci III. September 1, 1993; 316 (9): 959-71.


Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip., Gont LK., Development. December 1, 1993; 119 (4): 991-1004.                


Expression of zebrafish goosecoid and no tail gene products in wild-type and mutant no tail embryos., Schulte-Merker S., Development. April 1, 1994; 120 (4): 843-52.


Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate., Turner DL., Genes Dev. June 15, 1994; 8 (12): 1434-47.        


The Xenopus homologue of Otx2 is a maternal homeobox gene that demarcates and specifies anterior body regions., Pannese M., Development. March 1, 1995; 121 (3): 707-20.                      


Anterior neurectoderm is progressively induced during gastrulation: the role of the Xenopus homeobox gene orthodenticle., Blitz IL., Development. April 1, 1995; 121 (4): 993-1004.              


The homeobox-containing gene XANF-1 may control development of the Spemann organizer., Zaraisky AG., Development. November 1, 1995; 121 (11): 3839-47.        


A homeobox gene essential for zebrafish notochord development., Talbot WS., Nature. November 9, 1995; 378 (6553): 150-7.


Anti-dorsalizing morphogenetic protein is a novel TGF-beta homolog expressed in the Spemann organizer., Moos M., Development. December 1, 1995; 121 (12): 4293-301.                  


Overexpression of the homeobox gene Xnot-2 leads to notochord formation in Xenopus., Gont LK., Dev Biol. February 25, 1996; 174 (1): 174-8.  


The Xvent-2 homeobox gene is part of the BMP-4 signalling pathway controlling [correction of controling] dorsoventral patterning of Xenopus mesoderm., Onichtchouk D., Development. October 1, 1996; 122 (10): 3045-53.                  


Expression of a Na,K-ATPase beta 3 subunit during development of the zebrafish central nervous system., Appel C., J Neurosci Res. December 1, 1996; 46 (5): 551-64.


A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate., Li H., Development. February 1, 1997; 124 (3): 603-15.                  


Microtubule disruption reveals that Spemann's organizer is subdivided into two domains by the vegetal alignment zone., Lane MC., Development. February 1, 1997; 124 (4): 895-906.                


XIPOU 2 is a potential regulator of Spemann's Organizer., Witta SE., Development. March 1, 1997; 124 (6): 1179-89.                


The role of planar and early vertical signaling in patterning the expression of Hoxb-1 in Xenopus., Poznanski A., Dev Biol. April 15, 1997; 184 (2): 351-66.                


Mechanisms of dorsal-ventral patterning in noggin-induced neural tissue., Knecht AK., Development. June 1, 1997; 124 (12): 2477-88.                  


Gli1 is a target of Sonic hedgehog that induces ventral neural tube development., Lee J., Development. July 1, 1997; 124 (13): 2537-52.                  


Vertebrate head induction by anterior primitive endoderm., Bouwmeester T., Bioessays. October 1, 1997; 19 (10): 855-63.


Anterior specification of embryonic ectoderm: the role of the Xenopus cement gland-specific gene XAG-2., Aberger F., Mech Dev. March 1, 1998; 72 (1-2): 115-30.              


Regulation in the heart field of zebrafish., Serbedzija GN., Development. March 1, 1998; 125 (6): 1095-101.


Patterns of gene expression in the core of Spemann's organizer and activin-treated ectoderm in Cynops pyrrhogaster., Yokota C., Dev Growth Differ. June 1, 1998; 40 (3): 335-41.


Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry., Rebagliati MR., Dev Biol. July 15, 1998; 199 (2): 261-72.


Induction of the zebrafish ventral brain and floorplate requires cyclops/nodal signalling., Sampath K., Nature. September 10, 1998; 395 (6698): 185-9.


Notochord regulates cardiac lineage in zebrafish embryos., Goldstein AM., Dev Biol. September 15, 1998; 201 (2): 247-52.


Characterization of two frizzled8 homologues expressed in the embryonic shield and prechordal plate of zebrafish embryos., Kim SH., Mech Dev. November 1, 1998; 78 (1-2): 193-201.


Determination of the zebrafish forebrain: induction and patterning., Grinblat Y., Development. November 1, 1998; 125 (22): 4403-16.


Follistatin and noggin are excluded from the zebrafish organizer., Bauer H., Dev Biol. December 15, 1998; 204 (2): 488-507.


The origins of primitive blood in Xenopus: implications for axial patterning., Lane MC., Development. February 1, 1999; 126 (3): 423-34.            


Rearranging gastrulation in the name of yolk: evolution of gastrulation in yolk-rich amniote eggs., Arendt D., Mech Dev. March 1, 1999; 81 (1-2): 3-22.


The EGF-CFC protein one-eyed pinhead is essential for nodal signaling., Gritsman K., Cell. April 2, 1999; 97 (1): 121-32.


A mouse cerberus/Dan-related gene family., Pearce JJ., Dev Biol. May 1, 1999; 209 (1): 98-110.


A calcium-binding motif in SPARC/osteonectin inhibits chordomesoderm cell migration during Xenopus laevis gastrulation: evidence of counter-adhesive activity in vivo., Huynh MH., Dev Growth Differ. August 1, 1999; 41 (4): 407-18.          


Animal-vegetal asymmetries influence the earliest steps in retina fate commitment in Xenopus., Moore KB., Dev Biol. August 1, 1999; 212 (1): 25-41.              


Expression pattern of Dkk-1 during mouse limb development., Grotewold L., Mech Dev. December 1, 1999; 89 (1-2): 151-3.


Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation., Hashimoto H., Dev Biol. January 1, 2000; 217 (1): 138-52.  


XTIF2, a Xenopus homologue of the human transcription intermediary factor, is required for a nuclear receptor pathway that also interacts with CBP to suppress Brachyury and XMyoD., de la Calle-Mustienes E., Mech Dev. March 1, 2000; 91 (1-2): 119-29.  

???pagination.result.page??? 1 2 3 ???pagination.result.next???