Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Anatomy Item Literature (1359) Expression Attributions Wiki
XB-ANAT-787

Papers associated with early embryonic cell (and foxg1)

Limit to papers also referencing gene:
Show all early embryonic cell papers
???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Information integration during bioelectric regulation of morphogenesis of the embryonic frog brain., Manicka S., iScience. December 15, 2023; 26 (12): 108398.                                                        


Rspo2 inhibits TCF3 phosphorylation to antagonize Wnt signaling during vertebrate anteroposterior axis specification., Reis AH., Sci Rep. June 28, 2021; 11 (1): 13433.            


Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos., Lichtig H., Front Physiol. January 1, 2020; 11 75.                    


HCN2 Channel-Induced Rescue of Brain Teratogenesis via Local and Long-Range Bioelectric Repair., Pai VP., Front Cell Neurosci. January 1, 2020; 14 136.                      


Bioinformatics Screening of Genes Specific for Well-Regenerating Vertebrates Reveals c-answer, a Regulator of Brain Development and Regeneration., Korotkova DD., Cell Rep. October 22, 2019; 29 (4): 1027-1040.e6.                              


Head formation requires Dishevelled degradation that is mediated by March2 in concert with Dapper1., Lee H, Lee H., Development. April 10, 2018; 145 (7):               


Gene expression of the two developmentally regulated dermatan sulfate epimerases in the Xenopus embryo., Gouignard N., PLoS One. January 18, 2018; 13 (1): e0191751.                                                          


Tbx2 regulates anterior neural specification by repressing FGF signaling pathway., Cho GS., Dev Biol. January 15, 2017; 421 (2): 183-193.              


Tbx3 represses bmp4 expression and, with Pax6, is required and sufficient for retina formation., Motahari Z., Development. October 1, 2016; 143 (19): 3560-3572.                                      


Noggin4 is a long-range inhibitor of Wnt8 signalling that regulates head development in Xenopus laevis., Eroshkin FM., Sci Rep. January 22, 2016; 6 23049.                                                            


G protein-coupled receptors Flop1 and Flop2 inhibit Wnt/β-catenin signaling and are essential for head formation in Xenopus., Miyagi A., Dev Biol. November 1, 2015; 407 (1): 131-44.                                          


The small leucine-rich repeat secreted protein Asporin induces eyes in Xenopus embryos through the IGF signalling pathway., Luehders K., Development. October 1, 2015; 142 (19): 3351-61.                              


The serpin PN1 is a feedback regulator of FGF signaling in germ layer and primary axis formation., Acosta H., Development. March 15, 2015; 142 (6): 1146-58.                                    


Endogenous gradients of resting potential instructively pattern embryonic neural tissue via Notch signaling and regulation of proliferation., Pai VP., J Neurosci. March 11, 2015; 35 (10): 4366-85.                    


Insulin-like factor regulates neural induction through an IGF1 receptor-independent mechanism., Haramoto Y., Sci Rep. January 12, 2015; 5 11603.                                  


Xenopus laevis FGF receptor substrate 3 (XFrs3) is important for eye development and mediates Pax6 expression in lens placode through its Shp2-binding sites., Kim YJ., Dev Biol. January 1, 2015; 397 (1): 129-39.                                          


Xenopus mutant reveals necessity of rax for specifying the eye field which otherwise forms tissue with telencephalic and diencephalic character., Fish MB., Dev Biol. November 15, 2014; 395 (2): 317-330.                  


Custos controls β-catenin to regulate head development during vertebrate embryogenesis., Komiya Y., Proc Natl Acad Sci U S A. September 9, 2014; 111 (36): 13099-104.                                


Ras-dva1 small GTPase regulates telencephalon development in Xenopus laevis embryos by controlling Fgf8 and Agr signaling at the anterior border of the neural plate., Tereshina MB., Biol Open. March 15, 2014; 3 (3): 192-203.                        


An essential role for LPA signalling in telencephalon development., Geach TJ., Development. February 1, 2014; 141 (4): 940-9.                            


Role of Sp5 as an essential early regulator of neural crest specification in xenopus., Park DS., Dev Dyn. December 1, 2013; 242 (12): 1382-94.                


BMP signal attenuates FGF pathway in anteroposterior neural patterning., Cho GS., Biochem Biophys Res Commun. May 10, 2013; 434 (3): 509-15.        


Tiki1 is required for head formation via Wnt cleavage-oxidation and inactivation., Zhang X., Cell. June 22, 2012; 149 (7): 1565-77.                      


The dual regulator Sufu integrates Hedgehog and Wnt signals in the early Xenopus embryo., Min TH., Dev Biol. October 1, 2011; 358 (1): 262-76.                            


Barhl2 limits growth of the diencephalic primordium through Caspase3 inhibition of beta-catenin activation., Juraver-Geslin HA., Proc Natl Acad Sci U S A. February 8, 2011; 108 (6): 2288-93.                    


Anterior neural development requires Del1, a matrix-associated protein that attenuates canonical Wnt signaling via the Ror2 pathway., Takai A., Development. October 1, 2010; 137 (19): 3293-302.            


Cell cycle control of wnt receptor activation., Davidson G., Dev Cell. December 1, 2009; 17 (6): 788-99.    


Retinol dehydrogenase 10 is a feedback regulator of retinoic acid signalling during axis formation and patterning of the central nervous system., Strate I., Development. February 1, 2009; 136 (3): 461-72.                


Neural crests are actively precluded from the anterior neural fold by a novel inhibitory mechanism dependent on Dickkopf1 secreted by the prechordal mesoderm., Carmona-Fontaine C., Dev Biol. September 15, 2007; 309 (2): 208-21.              


The secreted serine protease xHtrA1 stimulates long-range FGF signaling in the early Xenopus embryo., Hou S., Dev Cell. August 1, 2007; 13 (2): 226-41.                      


Cell cycling and differentiation do not require the retinoblastoma protein during early Xenopus development., Cosgrove RA., Dev Biol. March 1, 2007; 303 (1): 311-24.                      


FoxI1e activates ectoderm formation and controls cell position in the Xenopus blastula., Mir A., Development. February 1, 2007; 134 (4): 779-88.                  


Neural induction in Xenopus requires inhibition of Wnt-beta-catenin signaling., Heeg-Truesdell E., Dev Biol. October 1, 2006; 298 (1): 71-86.                    


Hex acts with beta-catenin to regulate anteroposterior patterning via a Groucho-related co-repressor and Nodal., Zamparini AL., Development. September 1, 2006; 133 (18): 3709-22.                                    


Kermit 2/XGIPC, an IGF1 receptor interacting protein, is required for IGF signaling in Xenopus eye development., Wu J., Development. September 1, 2006; 133 (18): 3651-60.          


The MRH protein Erlectin is a member of the endoplasmic reticulum synexpression group and functions in N-glycan recognition., Cruciat CM., J Biol Chem. May 5, 2006; 281 (18): 12986-93.                        


Tes regulates neural crest migration and axial elongation in Xenopus., Dingwell KS., Dev Biol. May 1, 2006; 293 (1): 252-67.                          


The doublesex-related gene, XDmrt4, is required for neurogenesis in the olfactory system., Huang X., Proc Natl Acad Sci U S A. August 9, 2005; 102 (32): 11349-54.                        


Xenopus aristaless-related homeobox (xARX) gene product functions as both a transcriptional activator and repressor in forebrain development., Seufert DW., Dev Dyn. February 1, 2005; 232 (2): 313-24.                  


Functional role of a novel ternary complex comprising SRF and CREB in expression of Krox-20 in early embryos of Xenopus laevis., Watanabe T., Dev Biol. January 15, 2005; 277 (2): 508-21.                


Autoregulation of canonical Wnt signaling controls midbrain development., Kunz M., Dev Biol. September 15, 2004; 273 (2): 390-401.          


Xenopus XsalF: anterior neuroectodermal specification by attenuating cellular responsiveness to Wnt signaling., Onai T., Dev Cell. July 1, 2004; 7 (1): 95-106.            


Xantivin suppresses the activity of EGF-CFC genes to regulate nodal signaling., Tanegashima K., Int J Dev Biol. June 1, 2004; 48 (4): 275-83.          


Glypican 4 modulates FGF signalling and regulates dorsoventral forebrain patterning in Xenopus embryos., Galli A., Development. October 1, 2003; 130 (20): 4919-29.              


The IGF pathway regulates head formation by inhibiting Wnt signaling in Xenopus., Richard-Parpaillon L., Dev Biol. April 15, 2002; 244 (2): 407-17.                    


The Wnt/beta-catenin pathway posteriorizes neural tissue in Xenopus by an indirect mechanism requiring FGF signalling., Domingos PM., Dev Biol. November 1, 2001; 239 (1): 148-60.              


A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus., Kiecker C., Development. November 1, 2001; 128 (21): 4189-201.              


Active repression of RAR signaling is required for head formation., Koide T., Genes Dev. August 15, 2001; 15 (16): 2111-21.            


Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate., Hardcastle Z., Development. March 1, 2000; 127 (6): 1303-14.                  


FGF signaling and the anterior neural induction in Xenopus., Hongo I., Dev Biol. December 15, 1999; 216 (2): 561-81.                            

???pagination.result.page??? 1 2 ???pagination.result.next???