Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications(41)

Publications By Qinghua Tao

Results 1 - 41 of 41 results

Page(s): 1

HMCES modulates the transcriptional regulation of nodal/activin and BMP signaling in mESCs., Liang T, Bai J, Zhou W, Lin H, Ma S, Zhu X, Tao Q, Xi Q., Cell Rep. July 12, 2022; 40 (2): 111038.

Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex., Zhu X, Huang G, Zeng C, Zhan X, Liang K, Xu Q, Zhao Y, Wang P, Wang Q, Zhou Q, Tao Q, Liu M, Lei J, Yan C, Shi Y., Science. June 10, 2022; 376 (6598): eabl8280.

Cryo-EM structure of the inner ring from the Xenopus laevis nuclear pore complex., Huang G, Zhan X, Zeng C, Liang K, Zhu X, Zhao Y, Wang P, Wang Q, Zhou Q, Tao Q, Liu M, Lei J, Yan C, Shi Y., Cell Res. May 1, 2022; 32 (5): 451-460.                                              

Cryo-EM structure of the nuclear ring from Xenopus laevis nuclear pore complex., Huang G, Zhan X, Zeng C, Zhu X, Liang K, Zhao Y, Wang P, Wang Q, Zhou Q, Tao Q, Liu M, Lei J, Yan C, Shi Y., Cell Res. April 1, 2022; 32 (4): 349-358.

Lysosomal degradation of the maternal dorsal determinant Hwa safeguards dorsal body axis formation., Zhu X, Wang P, Wei J, Li Y, Zhai J, Zheng T, Tao Q., EMBO Rep. December 6, 2021; 22 (12): e53185.

The cytokine FAM3B/PANDER is an FGFR ligand that promotes posterior development in Xenopus., Zhang F, Zhu X, Wang P, He Q, Huang H, Zheng T, Li Y, Jia H, Xu L, Zhao H, Colozza G, Tao Q, De Robertis EM, Ding Y., Proc Natl Acad Sci U S A. May 18, 2021; 118 (20):           

Molecular architecture of the luminal ring of the Xenopus laevis nuclear pore complex., Zhang Y, Li S, Zeng C, Huang G, Zhu X, Wang Q, Wang K, Zhou Q, Yan C, Zhang W, Yang G, Liu M, Tao Q, Lei J, Shi Y., Cell Res. June 1, 2020; 30 (6): 532-540.                                

Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex by cryo-electron microscopy single particle analysis., Huang G, Zhang Y, Zhu X, Zeng C, Wang Q, Zhou Q, Tao Q, Liu M, Lei J, Yan C, Shi Y., Cell Res. June 1, 2020; 30 (6): 520-531.                                    

Expression of the hormonal FGF co-receptor Klotho beta in the Xenopus laevis model., Chen G, Tao Q., Cell Biol Int. February 1, 2019; 43 (2): 207-213.

Maternal Huluwa dictates the embryonic body axis through β-catenin in vertebrates., Yan L, Chen J, Zhu X, Sun J, Wu X, Shen W, Zhang W, Tao Q, Meng A., Science. November 23, 2018; 362 (6417):

Epigenetic regulation of left-right asymmetry by DNA methylation., Wang L, Liu Z, Lin H, Ma D, Tao Q, Liu F., EMBO J. October 16, 2017; 36 (20): 2987-2997.

KDM3A-mediated demethylation of histone H3 lysine 9 facilitates the chromatin binding of Neurog2 during neurogenesis., Lin H, Zhu X, Chen G, Song L, Gao L, Khand AA, Chen Y, Lin G, Tao Q., Development. October 15, 2017; 144 (20): 3674-3685.                          

The RNF146 E3 ubiquitin ligase is required for the control of Wnt signaling and body pattern formation in Xenopus., Zhu X, Xing R, Tan R, Dai R, Tao Q., Mech Dev. October 1, 2017; 147 28-36.              

Conserved gene regulatory module specifies lateral neural borders across bilaterians., Li Y, Zhao D, Horie T, Chen G, Bao H, Chen S, Liu W, Horie R, Liang T, Dong B, Feng Q, Tao Q, Liu X., Proc Natl Acad Sci U S A. August 1, 2017; 114 (31): E6352-E6360.      

The MLL/Setd1b methyltransferase is required for the Spemann''s organizer gene activation in Xenopus., Lin H, Min Z, Tao Q., Mech Dev. November 1, 2016; 142 1-9.              

Ascl1 represses the mesendoderm induction in Xenopus., Min Z, Lin H, Zhu X, Gao L, Khand AA, Tao Q., Acta Biochim Biophys Sin (Shanghai). November 1, 2016; 48 (11): 1006-1015.

A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT., Gao L, Zhu X, Chen G, Ma X, Zhang Y, Khand AA, Shi H, Gu F, Lin H, Chen Y, Zhang H, He L, Tao Q., Development. February 1, 2016; 143 (3): 492-503.                            

Sebox regulates mesoderm formation in early amphibian embryos., Chen G, Tan R, Tao Q., Dev Dyn. November 1, 2015; 244 (11): 1415-26.              

NF2/Merlin is required for the axial pattern formation in the Xenopus laevis embryo., Zhu X, Min Z, Tan R, Tao Q., Mech Dev. November 1, 2015; 138 Pt 3 305-12.                

Small C-terminal Domain Phosphatase 3 Dephosphorylates the Linker Sites of Receptor-regulated Smads (R-Smads) to Ensure Transforming Growth Factor β (TGFβ)-mediated Germ Layer Induction in Xenopus Embryos., Sun G, Hu Z, Min Z, Yan X, Guan Z, Su H, Fu Y, Ma X, Chen YG, Zhang MQ, Tao Q, Wu W., J Biol Chem. July 10, 2015; 290 (28): 17239-49.                  

NEDD4L regulates convergent extension movements in Xenopus embryos via Disheveled-mediated non-canonical Wnt signaling., Zhang Y, Ding Y, Chen YG, Tao Q., Dev Biol. August 1, 2014; 392 (1): 15-25.                              

HECT domain-containing E3 ubiquitin ligase NEDD4L negatively regulates Wnt signaling by targeting dishevelled for proteasomal degradation., Ding Y, Zhang Y, Xu C, Tao QH, Chen YG., J Biol Chem. March 22, 2013; 288 (12): 8289-8298.

Maternal Mga is required for Wnt signaling and organizer formation in the early Xenopus embryo., Gu F, Shi H, Gao L, Zhang H, Tao Q., Acta Biochim Biophys Sin (Shanghai). November 1, 2012; 44 (11): 939-47.

Regulation of classical cadherin membrane expression and F-actin assembly by alpha-catenins, during Xenopus embryogenesis., Nandadasa S, Tao Q, Shoemaker A, Cha SW, Wylie C., PLoS One. January 1, 2012; 7 (6): e38756.                      

Transmembrane protein 198 promotes LRP6 phosphorylation and Wnt signaling activation., Liang J, Fu Y, Cruciat CM, Jia S, Wang Y, Tong Z, Tao Q, Ingelfinger D, Boutros M, Meng A, Niehrs C, Wu W., Mol Cell Biol. July 1, 2011; 31 (13): 2577-90.

N- and E-cadherins in Xenopus are specifically required in the neural and non-neural ectoderm, respectively, for F-actin assembly and morphogenetic movements., Nandadasa S, Tao Q, Menon NR, Heasman J, Wylie C., Development. April 1, 2009; 136 (8): 1327-38.                      

Wnt5a and Wnt11 interact in a maternal Dkk1-regulated fashion to activate both canonical and non-canonical signaling in Xenopus axis formation., Cha SW, Tadjuidje E, Tao Q, Wylie C, Heasman J., Development. November 1, 2008; 135 (22): 3719-29.        

G-protein-coupled signals control cortical actin assembly by controlling cadherin expression in the early Xenopus embryo., Tao Q, Nandadasa S, McCrea PD, Heasman J, Wylie C., Development. July 1, 2007; 134 (14): 2651-61.                    

Wnt11/beta-catenin signaling in both oocytes and early embryos acts through LRP6-mediated regulation of axin., Kofron M, Birsoy B, Houston D, Tao Q, Wylie C, Heasman J., Development. February 1, 2007; 134 (3): 503-13.      

Jun NH2-terminal kinase (JNK) prevents nuclear beta-catenin accumulation and regulates axis formation in Xenopus embryos., Liao G, Tao Q, Kofron M, Chen JS, Schloemer A, Davis RJ, Hsieh JC, Wylie C, Heasman J, Kuan CY., Proc Natl Acad Sci U S A. October 31, 2006; 103 (44): 16313-8.                    

A novel G protein-coupled receptor, related to GPR4, is required for assembly of the cortical actin skeleton in early Xenopus embryos., Tao Q, Lloyd B, Lang S, Houston D, Zorn A, Wylie C., Development. June 1, 2005; 132 (12): 2825-36.              

Maternal wnt11 activates the canonical wnt signaling pathway required for axis formation in Xenopus embryos., Tao Q, Yokota C, Puck H, Kofron M, Birsoy B, Yan D, Asashima M, Wylie CC, Lin X, Heasman J., Cell. March 25, 2005; 120 (6): 857-71.            

Lysophosphatidic acid signaling controls cortical actin assembly and cytoarchitecture in Xenopus embryos., Lloyd B, Tao Q, Lang S, Wylie C., Development. February 1, 2005; 132 (4): 805-16.                    

The Xenopus noggin promoter drives roof-plate specific transcription., Geng X, Xiao L, Tao Q, Hu R, Rupp RA, Ding X., Neuroreport. December 2, 2003; 14 (17): 2163-6.

The role of maternal CREB in early embryogenesis of Xenopus laevis., Sundaram N, Tao Q, Wylie C, Heasman J., Dev Biol. September 15, 2003; 261 (2): 337-52.

The roles of three signaling pathways in the formation and function of the Spemann Organizer., Xanthos JB, Kofron M, Tao Q, Schaible K, Wylie C, Heasman J., Development. September 1, 2002; 129 (17): 4027-43.                  

Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm., Yang J, Mei W, Otto A, Xiao L, Tao Q, Geng X, Rupp RA, Ding X., Mech Dev. July 1, 2002; 115 (1-2): 79-89.              

An interferon regulatory factor-like binding element restricts Xmyf-5 expression in the posterior somites during Xenopus myogenesis., Mei W, Yang J, Tao Q, Geng X, Rupp RA, Ding X., FEBS Lett. September 7, 2001; 505 (1): 47-52.

Cloning and analysing of 5'' flanking region of Xenopus organizer gene noggin., Tao QH, Yang J, Mei WY, Geng X, Ding XY., Cell Res. September 1, 1999; 9 (3): 209-16.

Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central nervous system., Griffin G, Wray EJ, Tao Q, McAllister SD, Rorrer WK, Aung MM, Martin BR, Abood ME., Eur J Pharmacol. July 14, 1999; 377 (1): 117-25.

The Regulation of Xmyf-5 Gene, a Muscle Determinant, Expression in Xenopus Laevis., Mei WY, Yang J, Tao QH, Ding XY., Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). January 1, 1999; 31 (5): 583-586.

Page(s): 1