Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (300) GO Terms (2) Nucleotides (253) Proteins (43) Interactants (1356) Wiki
XB-GENEPAGE-6539689

Papers associated with krt12.4



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Fingerprinting taste buds: intermediate filaments and their implication for taste bud formation., Witt M, Reutter K, Ganchrow D, Ganchrow JR., Philos Trans R Soc Lond B Biol Sci. September 29, 2000; 355 (1401): 1233-7.


Xotx5b, a new member of the Otx gene family, may be involved in anterior and eye development in Xenopus laevis., Vignali R, Colombetti S, Lupo G, Zhang W, Stachel S, Harland RM, Barsacchi G., Mech Dev. August 1, 2000; 96 (1): 3-13.                  


Regulation and function of Dlx3 in vertebrate development., Beanan MJ, Sargent TD., Dev Dyn. August 1, 2000; 218 (4): 545-53.      


Expression of neural properties in olfactory cytokeratin-positive basal cell line., Satoh M, Yoshida T., Brain Res Dev Brain Res. June 30, 2000; 121 (2): 219-22.


The Xenopus homologue of Bicaudal-C is a localized maternal mRNA that can induce endoderm formation., Wessely O, De Robertis EM., Development. May 1, 2000; 127 (10): 2053-62.        


In vivo observation of a nuclear channel-like system: evidence for a distinct interchromosomal domain compartment in interphase cells., Reichenzeller M, Burzlaff A, Lichter P, Herrmann H., J Struct Biol. April 1, 2000; 129 (2-3): 175-85.


Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27(XIC1) and imparting a neural fate., Hardcastle Z, Papalopulu N., Development. March 1, 2000; 127 (6): 1303-14.                  


Requirement of Sox2-mediated signaling for differentiation of early Xenopus neuroectoderm., Kishi M, Mizuseki K, Sasai N, Yamazaki H, Shiota K, Nakanishi S, Sasai Y., Development. February 1, 2000; 127 (4): 791-800.              


Neuralization of the Xenopus embryo by inhibition of p300/ CREB-binding protein function., Kato Y, Shi Y, Shi Y, He X., J Neurosci. November 1, 1999; 19 (21): 9364-73.          


A novel guanine exchange factor increases the competence of early ectoderm to respond to neural induction., Morgan R, Hooiveld MH, Durston AJ., Mech Dev. October 1, 1999; 88 (1): 67-72.        


Neural tube closure in Xenopus laevis involves medial migration, directed protrusive activity, cell intercalation and convergent extension., Davidson LA, Keller RE., Development. October 1, 1999; 126 (20): 4547-56.              


Inhibitory patterning of the anterior neural plate in Xenopus by homeodomain factors Dlx3 and Msx1., Feledy JA, Beanan MJ, Sandoval JJ, Goodrich JS, Lim JH, Matsuo-Takasaki M, Sato SM, Sargent TD., Dev Biol. August 15, 1999; 212 (2): 455-64.                


Xenopus GDF6, a new antagonist of noggin and a partner of BMPs., Chang C, Hemmati-Brivanlou A., Development. August 1, 1999; 126 (15): 3347-57.              


Functional analysis of human Smad1: role of the amino-terminal domain., Xu RH, Lechleider RJ, Shih HM, Hao CF, Sredni D, Roberts AB, Kung H., Biochem Biophys Res Commun. May 10, 1999; 258 (2): 366-73.      


derrière: a TGF-beta family member required for posterior development in Xenopus., Sun BI, Bush SM, Collins-Racie LA, LaVallie ER, DiBlasio-Smith EA, Wolfman NM, McCoy JM, Sive HL., Development. April 1, 1999; 126 (7): 1467-82.                    


Identification of renal podocytes in multiple species: higher vertebrates are vimentin positive/lower vertebrates are desmin positive., Yaoita E, Franke WW, Yamamoto T, Kawasaki K, Kihara I., Histochem Cell Biol. February 1, 1999; 111 (2): 107-15.


Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning., Gawantka V, Pollet N, Delius H, Vingron M, Pfister R, Nitsch R, Blumenstock C, Niehrs C., Mech Dev. October 1, 1998; 77 (2): 95-141.                                                            


The role of maternal VegT in establishing the primary germ layers in Xenopus embryos., Zhang J, Houston DW, King ML, Payne C, Wylie C, Heasman J., Cell. August 21, 1998; 94 (4): 515-24.                


Geminin, a neuralizing molecule that demarcates the future neural plate at the onset of gastrulation., Kroll KL, Salic AN, Evans LM, Kirschner MW., Development. August 1, 1998; 125 (16): 3247-58.                


Opl: a zinc finger protein that regulates neural determination and patterning in Xenopus., Kuo JS, Patel M, Gamse J, Merzdorf C, Liu X, Apekin V, Sive H., Development. August 1, 1998; 125 (15): 2867-82.                  


Xenopus Zic family and its role in neural and neural crest development., Nakata K, Nagai T, Aruga J, Mikoshiba K., Mech Dev. July 1, 1998; 75 (1-2): 43-51.            


Plakophilins 1a and 1b: widespread nuclear proteins recruited in specific epithelial cells as desmosomal plaque components., Schmidt A, Langbein L, Rode M, Prätzel S, Zimbelmann R, Franke WW., Cell Tissue Res. December 1, 1997; 290 (3): 481-99.


The homeobox gene PV.1 mediates specification of the prospective neural ectoderm in Xenopus embryos., Ault KT, Xu RH, Kung HF, Jamrich M., Dev Biol. December 1, 1997; 192 (1): 162-71.            


Epidermal induction and inhibition of neural fate by translation initiation factor 4AIII., Weinstein DC, Honoré E, Hemmati-Brivanlou A., Development. November 1, 1997; 124 (21): 4235-42.                  


Cleavage of Chordin by Xolloid metalloprotease suggests a role for proteolytic processing in the regulation of Spemann organizer activity., Piccolo S, Agius E, Lu B, Goodman S, Dale L, De Robertis EM., Cell. October 31, 1997; 91 (3): 407-16.            


Differential expression of Xenopus ribosomal protein gene XlrpS1c., Scholnick J, Sinor C, Oakes J, Outten W, Saha M., Biochim Biophys Acta. October 9, 1997; 1354 (1): 72-82.                      


Epithelial cell wedging and neural trough formation are induced planarly in Xenopus, without persistent vertical interactions with mesoderm., Poznanski A, Minsuk S, Stathopoulos D, Keller R., Dev Biol. September 15, 1997; 189 (2): 256-69.


[Induction of cell differentiation and programmed cell death in amphibian metamorphosis]., Nishikawa A., Hum Cell. September 1, 1997; 10 (3): 167-74.


Modified mRNA rescue of maternal CK1/8 mRNA depletion in Xenopus oocytes., Raats JM, Gell D, Vickers L, Heasman J, Wylie C., Antisense Nucleic Acid Drug Dev. August 1, 1997; 7 (4): 263-77.


The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules., Gard DL, Cha BJ, King E., Dev Biol. April 1, 1997; 184 (1): 95-114.                  


Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in beta-catenin that are modulated by the Wnt signaling pathway., Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT., J Cell Biol. March 10, 1997; 136 (5): 1123-36.                


Microinjection of anti-alpha-tubulin antibody (DM1A) inhibits progesterone-induced meiotic maturation and deranges the microtubule array in follicle-enclosed oocytes of the frog, Rana pipiens., Lessman CA, Wang T, Gard DL, Woods CW., Zygote. February 1, 1997; 5 (1): 83-95.


Structure and cytoskeletal organization of migratory mesoderm cells from the Xenopus gastrula., Selchow A, Winklbauer R., Cell Motil Cytoskeleton. January 1, 1997; 36 (1): 12-29.


Differential regulation of neurogenesis by the two Xenopus GATA-1 genes., Xu RH, Kim J, Taira M, Lin JJ, Zhang CH, Sredni D, Evans T, Kung HF., Mol Cell Biol. January 1, 1997; 17 (1): 436-43.


Positive and negative signals modulate formation of the Xenopus cement gland., Bradley L, Wainstock D, Sive H., Development. September 1, 1996; 122 (9): 2739-50.        


TGF-beta signals and a pattern in Xenopus laevis endodermal development., Henry GL, Brivanlou IH, Kessler DS, Hemmati-Brivanlou A, Melton DA., Development. March 1, 1996; 122 (3): 1007-15.          


Immunodetection of cytoskeletal structures and the Eg5 motor protein on deep-etch replicas of Xenopus egg cortices isolated during the cortical rotation., Chang P, LeGuellec K, Houliston E., Biol Cell. January 1, 1996; 88 (3): 89-98.


Behaviour of macroglial cells, as identified by their intermediate filament complement, during optic nerve regeneration of Xenopus tadpole., Rungger-Brändle E, Alliod C, Fouquet B, Messerli MM., Glia. April 1, 1995; 13 (4): 255-71.


Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vg1 and Xcat-2., Forristall C, Pondel M, Chen L, King ML., Development. January 1, 1995; 121 (1): 201-8.          


Cell type-specific desmosomal plaque proteins of the plakoglobin family: plakophilin 1 (band 6 protein)., Heid HW, Schmidt A, Zimbelmann R, Schäfer S, Winter-Simanowski S, Stumpp S, Keith M, Figge U, Schnölzer M, Franke WW., Differentiation. December 1, 1994; 58 (2): 113-31.


Reattachment of retinas to cultured pigment epithelial monolayers from Xenopus laevis., Defoe DM, Easterling KC., Invest Ophthalmol Vis Sci. April 1, 1994; 35 (5): 2466-76.


Tampering with cytokeratin expression results in cell dysfunction., Singh S, Gupta PD., Epithelial Cell Biol. January 1, 1994; 3 (2): 79-83.


Isolated vegetal cortex from Xenopus oocytes selectively retains localized mRNAs., Elinson RP, King ML, Forristall C., Dev Biol. December 1, 1993; 160 (2): 554-62.


Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos., Coffman CR, Skoglund P, Harris WA, Kintner CR., Cell. May 21, 1993; 73 (4): 659-71.            


XLPOU-60, a Xenopus POU-domain mRNA, is oocyte-specific from very early stages of oogenesis, and localised to presumptive mesoderm and ectoderm in the blastula., Whitfield T, Heasman J, Wylie C., Dev Biol. February 1, 1993; 155 (2): 361-70.                  


[A morphological study of the keratin cytoskeleton of the oocyte from the clawed toad using heterologous monoclonal antibodies]., Riabova LV, Lehtonen E, Wartiovaara J, Vasetskiĭ SG., Ontogenez. January 1, 1993; 24 (6): 22-32.


Responses of embryonic Xenopus cells to activin and FGF are separated by multiple dose thresholds and correspond to distinct axes of the mesoderm., Green JB, New HV, Smith JC., Cell. November 27, 1992; 71 (5): 731-9.            


Function of maternal cytokeratin in Xenopus development., Torpey N, Wylie CC, Heasman J., Nature. June 4, 1992; 357 (6377): 413-5.


Localized expression of a Xenopus POU gene depends on cell-autonomous transcriptional activation and induction-dependent inactivation., Frank D, Harland RM., Development. June 1, 1992; 115 (2): 439-48.            


Spatial, temporal, and hormonal regulation of epidermal keratin expression during development of the frog, Xenopus laevis., Nishikawa A, Shimizu-Nishikawa K, Miller L., Dev Biol. May 1, 1992; 151 (1): 145-53.                

???pagination.result.page??? ???pagination.result.prev??? 1 2 3 4 5 6 ???pagination.result.next???