Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (59) GO Terms (11) Nucleotides (66) Proteins (36) Interactants (518) Wiki
XB-GENEPAGE-1032966

Papers associated with ascl1



???displayGene.coCitedPapers???
6 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

In vitro modeling of cranial placode differentiation: Recent advances, challenges, and perspectives., Griffin C, Saint-Jeannet JP., Dev Biol. February 1, 2024; 506 20-30.


Production and characterization of monoclonal antibodies to xenopus proteins., Horr B, Kurtz R, Pandey A, Hoffstrom BG, Schock E, LaBonne C, Alfandari D, Alfandari D., Development. February 14, 2023;                 


DNA-induced spatial entrapment of general transcription machinery can stabilize gene expression in a nondividing cell., Javed K, Jullien J, Agarwal G, Lawrence N, Butler R, Ioannou PS, Nazir F, Gurdon JB., Proc Natl Acad Sci U S A. January 25, 2022; 119 (4):                       


Temporal and spatial transcriptomic dynamics across brain development in Xenopus laevis tadpoles., Ta AC, Huang LC, McKeown CR, Bestman JE, Van Keuren-Jensen K, Cline HT., G3 (Bethesda). January 4, 2022; 12 (1):               


Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos., Umair Z, Kumar V, Goutam RS, Kumar S, Kumar S, Lee U, Kim J., Mol Cells. October 31, 2021; 44 (10): 723-735.          


Cellular response to spinal cord injury in regenerative and non-regenerative stages in Xenopus laevis., Edwards-Faret G, González-Pinto K, Cebrián-Silla A, Peñailillo J, García-Verdugo JM, Larraín J., Neural Dev. February 2, 2021; 16 (1): 2.                              


Long-term association of a transcription factor with its chromatin binding site can stabilize gene expression and cell fate commitment., Gurdon JB, Javed K, Vodnala M, Garrett N., Proc Natl Acad Sci U S A. June 30, 2020; 117 (26): 15075-15084.            


Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm., Reich S, Weinstein DC., Genes (Basel). November 6, 2019; 10 (11):         


Morpholinos Do Not Elicit an Innate Immune Response during Early Xenopus Embryogenesis., Paraiso KD, Blitz IL, Zhou JJ, Cho KWY., Dev Cell. May 20, 2019; 49 (4): 643-650.e3.        


Multi-site phosphorylation controls the neurogenic and myogenic activity of E47., Hardwick LJA, Davies JD, Philpott A., Biochem Biophys Res Commun. March 26, 2019; 511 (1): 111-116.        


N-terminal phosphorylation of xHes1 controls inhibition of primary neurogenesis in Xenopus., Hardwick LJA, Philpott A., Biochem Biophys Res Commun. February 5, 2019; 509 (2): 557-563.            


The N terminus of Ascl1 underlies differing proneural activity of mouse and Xenopus Ascl1 proteins., Hardwick LJA, Philpott A., Wellcome Open Res. January 1, 2018; 3 125.      


Interaction between opposing modes of phospho-regulation of the proneural proteins Ascl1 and Ngn2., Hardwick LJA, Philpott A., Wellcome Open Res. January 1, 2018; 3 129.    


KDM3A-mediated demethylation of histone H3 lysine 9 facilitates the chromatin binding of Neurog2 during neurogenesis., Lin H, Zhu X, Chen G, Song L, Gao L, Khand AA, Chen Y, Lin G, Tao Q, Tao Q., Development. October 15, 2017; 144 (20): 3674-3685.                          


Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes., Hockman D, Burns AJ, Schlosser G, Gates KP, Jevans B, Mongera A, Fisher S, Unlu G, Knapik EW, Kaufman CK, Mosimann C, Zon LI, Lancman JJ, Dong PDS, Lickert H, Tucker AS, Baker CV., Elife. April 7, 2017; 6                 


Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors., Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.                  


Ascl1 represses the mesendoderm induction in Xenopus., Min Z, Lin H, Zhu X, Gao L, Khand AA, Tao Q., Acta Biochim Biophys Sin (Shanghai). November 1, 2016; 48 (11): 1006-1015.


A novel role for Ascl1 in the regulation of mesendoderm formation via HDAC-dependent antagonism of VegT., Gao L, Zhu X, Chen G, Ma X, Zhang Y, Zhang Y, Khand AA, Shi H, Gu F, Lin H, Chen Y, Zhang H, He L, Tao Q, Tao Q., Development. February 1, 2016; 143 (3): 492-503.                            


Multi-site phosphorylation regulates NeuroD4 activity during primary neurogenesis: a conserved mechanism amongst proneural proteins., Hardwick LJ, Philpott A., Neural Dev. June 18, 2015; 10 15.                  


Ascl1 phospho-status regulates neuronal differentiation in a Xenopus developmental model of neuroblastoma., Wylie LA, Hardwick LJ, Papkovskaia TD, Thiele CJ, Philpott A., Dis Model Mech. May 1, 2015; 8 (5): 429-41.                


Multi-site phospho-regulation of proneural transcription factors controls proliferation versus differentiation in development and reprogramming., Philpott A., Neurogenesis (Austin). January 1, 2015; 2 (1): e1049733.      


The phosphorylation status of Ascl1 is a key determinant of neuronal differentiation and maturation in vivo and in vitro., Ali FR, Cheng K, Kirwan P, Metcalfe S, Livesey FJ, Barker RA, Philpott A., Development. June 1, 2014; 141 (11): 2216-24.            


Ascl1 as a novel player in the Ptf1a transcriptional network for GABAergic cell specification in the retina., Mazurier N, Parain K, Parlier D, Pretto S, Hamdache J, Vernier P, Locker M, Bellefroid E, Perron M., PLoS One. March 18, 2014; 9 (3): e92113.                        


The Prdm13 histone methyltransferase encoding gene is a Ptf1a-Rbpj downstream target that suppresses glutamatergic and promotes GABAergic neuronal fate in the dorsal neural tube., Hanotel J, Bessodes N, Thélie A, Hedderich M, Parain K, Van Driessche B, Brandão Kde O, Kricha S, Jorgensen MC, Grapin-Botton A, Serup P, Van Lint C, Perron M, Pieler T, Henningfeld KA, Bellefroid EJ., Dev Biol. February 15, 2014; 386 (2): 340-57.                                                                    


A nutrient-sensitive restriction point is active during retinal progenitor cell differentiation., Love NK, Keshavan N, Lewis R, Harris WA, Agathocleous M., Development. February 1, 2014; 141 (3): 697-706.                              


Polycomb repressive complex PRC2 regulates Xenopus retina development downstream of Wnt/β-catenin signaling., Aldiri I, Moore KB, Hutcheson DA, Zhang J, Vetter ML., Development. July 1, 2013; 140 (14): 2867-78.                


Ascl1/Mash1 promotes brain oligodendrogenesis during myelination and remyelination., Nakatani H, Martin E, Hassani H, Clavairoly A, Maire CL, Viadieu A, Kerninon C, Delmasure A, Frah M, Weber M, Nakafuku M, Zalc B, Thomas JL, Guillemot F, Nait-Oumesmar B, Parras C., J Neurosci. June 5, 2013; 33 (23): 9752-9768.


Involvement of XZFP36L1, an RNA-binding protein, in Xenopus neural development., Xia YJ, Zhao SH, Mao BY., Dongwuxue Yanjiu. December 1, 2012; 33 (E5-6): E82-8.                


Using myc genes to search for stem cells in the ciliary margin of the Xenopus retina., Xue XY, Harris WA., Dev Neurobiol. April 1, 2012; 72 (4): 475-90.                      


Spatial regulation of translation through RNA localization., Gonsalvez GB, Long RM., F1000 Biol Rep. January 1, 2012; 4 16.      


Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER)., Paix A, Le Nguyen PN, Sardet C., Dev Biol. September 1, 2011; 357 (1): 211-26.


Microarray identification of novel downstream targets of FoxD4L1/D5, a critical component of the neural ectodermal transcriptional network., Yan B, Neilson KM, Moody SA., Dev Dyn. December 1, 2010; 239 (12): 3467-80.                  


Phylotypic expression of the bHLH genes Neurogenin2, Neurod, and Mash1 in the mouse embryonic forebrain., Osório J, Mueller T, Rétaux S, Vernier P, Wullimann MF., J Comp Neurol. March 15, 2010; 518 (6): 851-71.


Xenopus zinc finger transcription factor IA1 (Insm1) expression marks anteroventral noradrenergic neuron progenitors in Xenopus embryos., Parlier D, Ariza A, Christulia F, Genco F, Vanhomwegen J, Kricha S, Souopgui J, Bellefroid EJ., Dev Dyn. August 1, 2008; 237 (8): 2147-57.          


Modulating the activity of neural crest regulatory factors., Taylor KM, LaBonne C., Curr Opin Genet Dev. August 1, 2007; 17 (4): 326-31.  


The role of early lineage in GABAergic and glutamatergic cell fate determination in Xenopus laevis., Li M, Sipe CW, Hoke K, August LL, Wright MA, Saha MS., J Comp Neurol. April 20, 2006; 495 (6): 645-57.                    


A phylotypic stage in vertebrate brain development: GABA cell patterns in zebrafish compared with mouse., Mueller T, Vernier P, Wullimann MF., J Comp Neurol. February 1, 2006; 494 (4): 620-34.


Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development., Dickinson K, Leonard J, Baker JC., Dev Dyn. February 1, 2006; 235 (2): 368-81.                        


The role of combinational coding by homeodomain and bHLH transcription factors in retinal cell fate specification., Wang JC, Harris WA., Dev Biol. September 1, 2005; 285 (1): 101-15.      


Xenopus paraxis homologue shows novel domains of expression., Carpio R, Honoré SM, Araya C, Mayor R., Dev Dyn. November 1, 2004; 231 (3): 609-13.        


Characterization of Xenopus Phox2a and Phox2b defines expression domains within the embryonic nervous system and early heart field., Talikka M, Stefani G, Brivanlou AH, Zimmerman K., Gene Expr Patterns. September 1, 2004; 4 (5): 601-7.      


A screen for co-factors of Six3., Tessmar K, Loosli F, Wittbrodt J., Mech Dev. September 1, 2002; 117 (1-2): 103-13.                  


Distinct patterns of downstream target activation are specified by the helix-loop-helix domain of proneural basic helix-loop-helix transcription factors., Talikka M, Perez SE, Zimmerman K., Dev Biol. July 1, 2002; 247 (1): 137-48.          


Irx1 and Irx2 expression in early lung development., Becker MB, Zülch A, Bosse A, Gruss P., Mech Dev. August 1, 2001; 106 (1-2): 155-8.


Becoming glial in the neural retina., Vetter ML, Moore KB., Dev Dyn. June 1, 2001; 221 (2): 146-53.


p48 subunit of mouse PTF1 binds to RBP-Jkappa/CBF-1, the intracellular mediator of Notch signalling, and is expressed in the neural tube of early stage embryos., Obata J, Yano M, Mimura H, Goto T, Nakayama R, Mibu Y, Oka C, Kawaichi M., Genes Cells. April 1, 2001; 6 (4): 345-60.  


Expression of two novel mouse Iroquois homeobox genes during neurogenesis., Cohen DR, Cheng CW, Cheng SH, Hui CC., Mech Dev. March 1, 2000; 91 (1-2): 317-21.


[The vertebrate nervous system comprises an enormous number of cell types]., Saito T., Nihon Shinkei Seishin Yakurigaku Zasshi. October 1, 1999; 19 (4): 147-50.


Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis., Brown NL, Kanekar S, Vetter ML, Tucker PK, Gemza DL, Glaser T., Development. December 1, 1998; 125 (23): 4821-33.    


Mammalian BarH homologue is a potential regulator of neural bHLH genes., Saito T, Sawamoto K, Okano H, Anderson DJ, Mikoshiba K., Dev Biol. July 15, 1998; 199 (2): 216-25.

???pagination.result.page??? 1 2 ???pagination.result.next???