Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (928) GO Terms (5) Nucleotides (262) Proteins (54) Interactants (2264) Wiki
XB-GENEPAGE-478788

Papers associated with tbxt



Limit to papers also referencing gene:
209 paper(s) referencing morpholinos

Results 1 - 50 of 928 results

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next

Sort Newest To Oldest Sort Oldest To Newest

Membrane potential drives the exit from pluripotency and cell fate commitment via calcium and mTOR., Sempou E, Kostiuk V, Zhu J, Cecilia Guerra M, Tyan L, Hwang W, Camacho-Aguilar E, Caplan MJ, Zenisek D, Warmflash A, Owens NDL, Khokha MK., Nat Commun. November 5, 2022; 13 (1): 6681.                                            


Foxh1 engages in chromatin regulation revealed by protein interactome analyses., Zhou JJ, Pham PD, Han H, Wang W, Cho KWY., Dev Growth Differ. August 1, 2022; 64 (6): 297-305.      


Normal Table of Xenopus development: a new graphical resource., Zahn N, James-Zorn C, Ponferrada VG, Adams DS, Grzymkowski J, Buchholz DR, Nascone-Yoder NM, Horb M, Moody SA, Vize PD, Zorn AM., Development. July 15, 2022; 149 (14):                         


Xbp1 and Brachyury establish an evolutionarily conserved subcircuit of the notochord gene regulatory network., Wu Y, Devotta A, José-Edwards DS, Kugler JE, Negrón-Piñeiro LJ, Braslavskaya K, Addy J, Saint-Jeannet JP, Di Gregorio A., Elife. January 20, 2022; 11                             


Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos., Umair Z, Kumar V, Goutam RS, Kumar S, Kumar S, Lee U, Kim J., Mol Cells. October 31, 2021; 44 (10): 723-735.          


The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K, Bhamra S, Paroissin C, Maneta-Peyret L, Boué-Grabot E, Jones EA., Commun Biol. October 7, 2021; 4 (1): 1158.                                


Huntingtin CAG expansion impairs germ layer patterning in synthetic human 2D gastruloids through polarity defects., Galgoczi S, Ruzo A, Markopoulos C, Yoney A, Phan-Everson T, Li S, Haremaki T, Metzger JJ, Etoc F, Brivanlou AH., Development. October 1, 2021; 148 (19):               


Tril dampens Nodal signaling through Pellino2- and Traf6-mediated activation of Nedd4l., Kim HS, Green YS, Xie Y, Christian JL., Proc Natl Acad Sci U S A. September 7, 2021; 118 (36):                       


A systemic cell cycle block impacts stage-specific histone modification profiles during Xenopus embryogenesis., Pokrovsky D, Forné I, Straub T, Imhof A, Rupp RAW., PLoS Biol. September 7, 2021; 19 (9): e3001377.                        


Rab7 is required for mesoderm patterning and gastrulation in Xenopus., Kreis J, Wielath FM, Vick P., Biol Open. July 15, 2021; 10 (7):                               


BMP signaling is enhanced intracellularly by FHL3 controlling WNT-dependent spatiotemporal emergence of the neural crest., Alkobtawi M, Pla P, Monsoro-Burq AH., Cell Rep. June 22, 2021; 35 (12): 109289.                        


The cytokine FAM3B/PANDER is an FGFR ligand that promotes posterior development in Xenopus., Zhang F, Zhu X, Wang P, He Q, Huang H, Zheng T, Li Y, Jia H, Xu L, Zhao H, Colozza G, Tao Q, De Robertis EM, Ding Y., Proc Natl Acad Sci U S A. May 18, 2021; 118 (20):           


Kindlin2 regulates neural crest specification via integrin-independent regulation of the FGF signaling pathway., Wang H, Wang C, Wang C, Wang C, Long Q, Zhang Y, Wang M, Liu J, Qi X, Cai D, Lu G, Sun J, Yao YG, Chan WY, Chan WY, Deng Y, Zhao H., Development. May 15, 2021; 148 (10):                                           


Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates., Bright AR, van Genesen S, Li Q, Grasso A, Frölich S, van der Sande M, van Heeringen SJ, Veenstra GJC., EMBO J. May 3, 2021; 40 (9): e104913.                        


A temporally resolved transcriptome for developing "Keller" explants of the Xenopus laevis dorsal marginal zone., Kakebeen AD, Huebner RJ, Shindo A, Kwon K, Kwon T, Wills AE, Wallingford JB., Dev Dyn. May 1, 2021; 250 (5): 717-731.              


Furry is required for cell movements during gastrulation and functionally interacts with NDR1., Cervino AS, Moretti B, Stuckenholz C, Grecco HE, Davidson LA, Davidson LA, Cirio MC., Sci Rep. March 23, 2021; 11 (1): 6607.                                  


Segregation of brain and organizer precursors is differentially regulated by Nodal signaling at blastula stage., Castro Colabianchi AM, Tavella MB, Boyadjián López LE, Rubinstein M, Franchini LF, López SL., Biol Open. February 25, 2021; 10 (2):                 


Modeling endoderm development and disease in Xenopus., Edwards NA, Zorn AM., Curr Top Dev Biol. January 1, 2021; 145 61-90.


Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis., Lee H, Lee H, Ismail T, Kim Y, Chae S, Ryu HY, Lee DS, Kwon TK, Park TJ, Kwon T, Lee HS, Lee HS., Antioxidants (Basel). December 12, 2020; 9 (12):               


Generation of a FOXH1 homozygous knockout human embryonic stem cell line by CRISPR/Cas9 system., Zhang T, Huang W, Xue X., Stem Cell Res. December 10, 2020; 50 102121.  


Identification and characterization of a fibroblast growth factor gene in the planarian Dugesia japonica., Auwal MA, Kashima M, Nishimura O, Hosoda K, Motoishi M, Kamimura A, Okumura A, Agata K, Umesono Y., Dev Growth Differ. December 1, 2020; 62 (9): 527-539.


Dusp1 modulates activin/smad2 mediated germ layer specification via FGF signal inhibition in Xenopus embryos., Umair Z, Kumar S, Rafiq K, Kumar V, Reman ZU, Lee SH, Kim S, Lee JY, Lee U, Kim J., Anim Cells Syst (Seoul). November 27, 2020; 24 (6): 359-370.            


Foxd4l1.1 negatively regulates transcription of neural repressor ventx1.1 during neuroectoderm formation in Xenopus embryos., Kumar S, Kumar S, Umair Z, Kumar V, Kumar S, Lee U, Kim J., Sci Rep. October 8, 2020; 10 (1): 16780.            


TMEM79/MATTRIN defines a pathway for Frizzled regulation and is required for Xenopus embryogenesis., Chen M, Amado N, Tan J, Reis A, Ge M, Abreu JG, He X., Elife. September 14, 2020; 9                                                                                           


Pinhead signaling regulates mesoderm heterogeneity via the FGF receptor-dependent pathway., Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY., Development. September 11, 2020; 147 (17):                 


Brachyury in the gastrula of basal vertebrates., Bruce AEE, Winklbauer R., Mech Dev. September 1, 2020; 163 103625.


Chromatin accessibility and histone acetylation in the regulation of competence in early development., Esmaeili M, Blythe SA, Tobias JW, Zhang K, Yang J, Klein PS., Dev Biol. June 1, 2020; 462 (1): 20-35.                


Tbx2 mediates dorsal patterning and germ layer suppression through inhibition of BMP/GDF and Activin/Nodal signaling., Reich S, Kayastha P, Teegala S, Weinstein DC., BMC Mol Cell Biol. May 28, 2020; 21 (1): 39.              


Rspo2 antagonizes FGF signaling during vertebrate mesoderm formation and patterning., Reis AH, Sokol SY., Development. May 27, 2020; 147 (10):                   


Heparan sulfate proteoglycans regulate BMP signalling during neural crest induction., Pegge J, Tatsinkam AJ, Rider CC, Bell E., Dev Biol. April 15, 2020; 460 (2): 108-114.        


FAM46B is a prokaryotic-like cytoplasmic poly(A) polymerase essential in human embryonic stem cells., Hu JL, Liang H, Zhang H, Yang MZ, Sun W, Zhang P, Luo L, Feng JX, Bai H, Liu F, Zhang T, Yang JY, Gao Q, Long Y, Ma XY, Chen Y, Zhong Q, Yu B, Liao S, Wang Y, Zhao Y, Zeng MS, Cao N, Wang J, Chen W, Yang HT, Gao S., Nucleic Acids Res. March 18, 2020; 48 (5): 2733-2748.                


The secreted BMP antagonist ERFE is required for the development of a functional circulatory system in Xenopus., Melchert J, Henningfeld KA, Richts S, Lingner T, Jonigk D, Pieler T., Dev Biol. March 15, 2020; 459 (2): 138-148.                                


The Cryo-EM structure of pannexin 1 reveals unique motifs for ion selection and inhibition., Michalski K, Syrjanen JL, Henze E, Kumpf J, Furukawa H, Kawate T., Elife. February 12, 2020; 9                     


Modeling Bainbridge-Ropers Syndrome in Xenopus laevis Embryos., Lichtig H, Artamonov A, Polevoy H, Reid CD, Bielas SL, Frank D., Front Physiol. January 1, 2020; 11 75.                    


Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway., Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY., Development. January 1, 2020;                                       


Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm., Reich S, Weinstein DC., Genes (Basel). November 6, 2019; 10 (11):         


Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals., Gentsch GE, Spruce T, Owens NDL, Smith JC., Nat Commun. September 19, 2019; 10 (1): 4269.                                        


BAP1 regulates epigenetic switch from pluripotency to differentiation in developmental lineages giving rise to BAP1-mutant cancers., Kuznetsov JN, Aguero TH, Owens DA, Kurtenbach S, Field MG, Durante MA, Rodriguez DA, King ML, Harbour JW., Sci Adv. September 18, 2019; 5 (9): eaax1738.        


Integration of Wnt and FGF signaling in the Xenopus gastrula at TCF and Ets binding sites shows the importance of short-range repression by TCF in patterning the marginal zone., Kjolby RAS, Truchado-Garcia M, Iruvanti S, Harland RM., Development. August 9, 2019; 146 (15):                           


The Spatiotemporal Control of Zygotic Genome Activation., Gentsch GE, Owens NDL, Smith JC., iScience. June 28, 2019; 16 485-498.                          


Morpholinos Do Not Elicit an Innate Immune Response during Early Xenopus Embryogenesis., Paraiso KD, Blitz IL, Zhou JJ, Cho KWY., Dev Cell. May 20, 2019; 49 (4): 643-650.e3.        


A Critical E-box in Barhl1 3'' Enhancer Is Essential for Auditory Hair Cell Differentiation., Hou K, Jiang H, Karim MR, Zhong C, Xu Z, Liu L, Guan M, Shao J, Huang X., Cells. May 15, 2019; 8 (5):               


A dual function of FGF signaling in Xenopus left-right axis formation., Schneider I, Kreis J, Schweickert A, Blum M, Vick P., Development. May 10, 2019; 146 (9):                               


The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis., Guo Y, Dorn T, Kühl SJ, Linnemann A, Rothe M, Pfister AS, Vainio S, Laugwitz KL, Moretti A, Kühl M., Dev Biol. May 1, 2019; 449 (1): 1-13.                                  


Developmental regulation of Wnt signaling by Nagk and the UDP-GlcNAc salvage pathway., Neitzel LR, Spencer ZT, Nayak A, Cselenyi CS, Benchabane H, Youngblood CQ, Zouaoui A, Ng V, Stephens L, Hann T, Patton JG, Robbins D, Ahmed Y, Lee E., Mech Dev. April 1, 2019; 156 20-31.                              


Nucleotide receptor P2RY4 is required for head formation via induction and maintenance of head organizer in Xenopus laevis., Harata A, Hirakawa M, Sakuma T, Yamamoto T, Hashimoto C., Dev Growth Differ. February 1, 2019; 61 (2): 186-197.                                


Liver Specification in the Absence of Cardiac Differentiation Revealed by Differential Sensitivity to Wnt/β Catenin Pathway Activation., Haworth K, Samuel L, Black S, Kirilenko P, Latinkic B., Front Physiol. February 1, 2019; 10 155.              


A YWHAZ Variant Associated With Cardiofaciocutaneous Syndrome Activates the RAF-ERK Pathway., Popov IK, Hiatt SM, Whalen S, Keren B, Ruivenkamp C, van Haeringen A, Chen MJ, Cooper GM, Korf BR, Chang C., Front Physiol. February 1, 2019; 10 388.                                


Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation., Kho M, Shi H, Nie S., Front Physiol. February 1, 2019; 10 542.          


Xenopus laevis FGF16 activates the expression of genes coding for the transcription factors Sp5 and Sp5l., Elsy M, Rowbotham A, Lord H, Isaacs HV, Pownall ME., Int J Dev Biol. January 1, 2019; 63 (11-12): 631-639.            

Page(s): 1 2 3 4 5 6 7 8 9 10 11 Next