Results 1 - 29 of 29 results
The Ribosomal Protein L5 Functions During Xenopus Anterior Development Through Apoptotic Pathways. , Schreiner C, Kernl B, Dietmann P, Riegger RJ, Kühl M , Kühl SJ ., Front Cell Dev Biol. February 22, 2022; 10 777121.
Retinol binding protein 1 affects Xenopus anterior neural development via all-trans retinoic acid signaling. , Flach H, Basten T, Schreiner C, Dietmann P, Greco S, Nies L, Roßmanith N, Walter S, Kühl M , Kühl SJ ., Dev Dyn. August 1, 2021; 250 (8): 1096-1112.
Pinhead signaling regulates mesoderm heterogeneity via FGF receptor-dependent pathway. , Ossipova O, Itoh K, Radu A, Ezan J, Sokol SY ., Development. January 1, 2020;
Lineage tracing of sclerotome cells in amphibian reveals that multipotent somitic cells originate from lateral somitic frontier. , Della Gaspera B , Mateus A, Andéol Y, Weill L, Charbonnier F, Chanoine C ., Dev Biol. September 1, 2019; 453 (1): 11-18.
Xenopus SOX5 enhances myogenic transcription indirectly through transrepression. , Della Gaspera B , Chesneau A, Weill L, Charbonnier F, Chanoine C ., Dev Biol. October 15, 2018; 442 (2): 262-275.
Nosip functions during vertebrate eye and cranial cartilage development. , Flach H, Krieg J, Hoffmeister M, Dietmann P, Reusch A, Wischmann L, Kernl B, Riegger R, Oess S, Kühl SJ ., Dev Dyn. September 1, 2018; 247 (9): 1070-1082.
Shared evolutionary origin of vertebrate neural crest and cranial placodes. , Horie R, Hazbun A, Chen K, Cao C, Levine M, Horie T., Nature. August 1, 2018; 560 (7717): 228-232.
An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos. , McQueen C, Pownall ME ., Mech Dev. August 1, 2017; 146 1-9.
Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. , Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G , Arnold SJ, Lienkamp SS ., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.
Using Xenopus to study genetic kidney diseases. , Lienkamp SS ., Semin Cell Dev Biol. March 1, 2016; 51 117-24.
Paraxis is required for somite morphogenesis and differentiation in Xenopus laevis. , Sánchez RS , Sánchez SS., Dev Dyn. August 1, 2015; 244 (8): 973-87.
Predicting Variabilities in Cardiac Gene Expression with a Boolean Network Incorporating Uncertainty. , Grieb M, Burkovski A, Sträng JE, Kraus JM, Groß A, Palm G, Kühl M , Kestler HA., PLoS One. July 16, 2015; 10 (7): e0131832.
COUP-TFs and eye development. , Tang K, Tsai SY, Tsai MJ., Biochim Biophys Acta. February 1, 2015; 1849 (2): 201-9.
A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. , Gujral TS, Chan M, Peshkin L , Sorger PK, Kirschner MW , MacBeath G., Cell. November 6, 2014; 159 (4): 844-56.
Fgfr signaling is required as the early eye field forms to promote later patterning and morphogenesis of the eye. , Atkinson-Leadbeater K , Hehr CL , McFarlane S ., Dev Dyn. May 1, 2014; .
The Wnt/ JNK signaling target gene alcam is required for embryonic kidney development. , Cizelsky W, Tata A, Kühl M , Kühl SJ ., Development. May 1, 2014; 141 (10): 2064-74.
A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development. , Paranjpe SS, Jacobi UG, van Heeringen SJ, Veenstra GJ ., BMC Genomics. November 6, 2013; 14 762.
In vivo T-box transcription factor profiling reveals joint regulation of embryonic neuromesodermal bipotency. , Gentsch GE , Owens ND, Martin SR, Piccinelli P, Faial T, Trotter MW, Gilchrist MJ , Smith JC ., Cell Rep. September 26, 2013; 4 (6): 1185-96.
Early transcriptional targets of MyoD link myogenesis and somitogenesis. , Maguire RJ , Isaacs HV , Pownall ME ., Dev Biol. November 15, 2012; 371 (2): 256-68.
Conservation and diversification of an ancestral chordate gene regulatory network for dorsoventral patterning. , Kozmikova I, Smolikova J, Vlcek C, Kozmik Z., PLoS One. February 3, 2011; 6 (2): e14650.
Comparative gene expression analysis and fate mapping studies suggest an early segregation of cardiogenic lineages in Xenopus laevis. , Gessert S , Kühl M ., Dev Biol. October 15, 2009; 334 (2): 395-408.
The role of FoxC1 in early Xenopus development. , Cha JY, Birsoy B, Kofron M , Mahoney E, Lang S, Wylie C , Heasman J ., Dev Dyn. October 1, 2007; 236 (10): 2731-41.
The forkhead transcription factors, Foxc1 and Foxc2, are required for arterial specification and lymphatic sprouting during vascular development. , Seo S, Fujita H, Nakano A, Kang M, Duarte A, Kume T., Dev Biol. June 15, 2006; 294 (2): 458-70.
Genomic profiling of mixer and Sox17beta targets during Xenopus endoderm development. , Dickinson K, Leonard J, Baker JC ., Dev Dyn. February 1, 2006; 235 (2): 368-81.
Microarray-based identification of VegT targets in Xenopus. , Taverner NV, Kofron M , Kofron M , Shin Y , Kabitschke C, Gilchrist MJ , Wylie C , Cho KW , Heasman J , Smith JC ., Mech Dev. March 1, 2005; 122 (3): 333-54.
Of Fox and Frogs: Fox (fork head/winged helix) transcription factors in Xenopus development. , Pohl BS, Knöchel W ., Gene. January 3, 2005; 344 21-32.
Foxc2 is expressed in developing lymphatic vessels and other tissues associated with lymphedema-distichiasis syndrome. , Dagenais SL, Hartsough RL, Erickson RP, Witte MH, Butler MG, Glover TW., Gene Expr Patterns. October 1, 2004; 4 (6): 611-9.
The forkhead genes, Foxc1 and Foxc2, regulate paraxial versus intermediate mesoderm cell fate. , Wilm B, James RG, Schultheiss TM, Hogan BL ., Dev Biol. July 1, 2004; 271 (1): 176-89.
Expression pattern of the winged helix factor XFD-11 during Xenopus embryogenesis. , Köster M , Dillinger K , Knöchel W ., Mech Dev. August 1, 1998; 76 (1-2): 169-73.