Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (57) GO Terms (18) Nucleotides (488) Proteins (50) Interactants (926) Wiki
XB-GENEPAGE-483417

Papers associated with sox11



???displayGene.coCitedPapers???
9 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

XLS13A and XLS13B: SRY-related genes of Xenopus laevis., Hiraoka Y, Komatsu N, Sakai Y, Ogawa M, Shiozawa M, Aiso S., Gene. September 15, 1997; 197 (1-2): 65-71.


Expression of the Sox11 gene in mouse embryos suggests roles in neuronal maturation and epithelio-mesenchymal induction., Hargrave M, Wright E, Kun J, Emery J, Cooper L, Koopman P., Dev Dyn. October 1, 1997; 210 (2): 79-86.


Expression of sox11 gene duplicates in zebrafish suggests the reciprocal loss of ancestral gene expression patterns in development., de Martino S, Yan YL, Jowett T, Postlethwait JH, Varga ZM, Ashworth A, Austin CA., Dev Dyn. March 1, 2000; 217 (3): 279-92.


Involvement of NLK and Sox11 in neural induction in Xenopus development., Hyodo-Miura J, Urushiyama S, Nagai S, Nishita M, Ueno N, Shibuya H., Genes Cells. May 1, 2002; 7 (5): 487-96.                  


Six1 promotes a placodal fate within the lateral neurogenic ectoderm by functioning as both a transcriptional activator and repressor., Brugmann SA, Pandur PD, Kenyon KL, Pignoni F, Moody SA., Development. December 1, 2004; 131 (23): 5871-81.                    


Systematic screening for genes specifically expressed in the anterior neuroectoderm during early Xenopus development., Takahashi N, Tochimoto N, Ohmori SY, Mamada H, Itoh M, Inamori M, Shinga J, Osada S, Taira M., Int J Dev Biol. January 1, 2005; 49 (8): 939-51.                                    


Temporal regulation of global gene expression and cellular morphology in Xenopus kidney cells in response to clinorotation., Kitamoto J, Fukui A, Asashima M., Adv Space Res. January 1, 2005; 35 (9): 1654-61.


Identification of neural genes using Xenopus DNA microarrays., Shin Y, Kitayama A, Koide T, Peiffer DA, Mochii M, Liao A, Ueno N, Cho KW., Dev Dyn. February 1, 2005; 232 (2): 432-44.            


SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus., Zhang C, Basta T, Fawcett SR, Klymkowsky MW., Dev Biol. February 15, 2005; 278 (2): 526-41.    


Grainyhead-like 3, a transcription factor identified in a microarray screen, promotes the specification of the superficial layer of the embryonic epidermis., Chalmers AD, Lachani K, Shin Y, Sherwood V, Cho KW, Papalopulu N., Mech Dev. September 1, 2006; 123 (9): 702-18.                                                  


Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells., Sinner D, Kordich JJ, Spence JR, Opoka R, Rankin S, Rankin S, Lin SC, Jonatan D, Zorn AM, Wells JM., Mol Cell Biol. November 1, 2007; 27 (22): 7802-15.                


Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development., Hayes JM, Kim SK, Abitua PB, Park TJ, Herrington ER, Kitayama A, Grow MW, Ueno N, Wallingford JB., Dev Biol. December 1, 2007; 312 (1): 115-30.                                          


Maternal Interferon Regulatory Factor 6 is required for the differentiation of primary superficial epithelia in Danio and Xenopus embryos., Sabel JL, d'Alençon C, O'Brien EK, Van Otterloo E, Lutz K, Cuykendall TN, Schutte BC, Houston DW, Cornell RA., Dev Biol. January 1, 2009; 325 (1): 249-62.                            


Xenopus Sox3 activates sox2 and geminin and indirectly represses Xvent2 expression to induce neural progenitor formation at the expense of non-neural ectodermal derivatives., Rogers CD, Harafuji N, Archer T, Cunningham DD, Casey ES., Mech Dev. January 1, 2009; 126 (1-2): 42-55.        


Identification of novel transcripts with differential dorso-ventral expression in Xenopus gastrula using serial analysis of gene expression., Faunes F, Sánchez N, Castellanos J, Vergara IA, Melo F, Larraín J., Genome Biol. February 11, 2009; 10 (2): R15.                    


foxD5 plays a critical upstream role in regulating neural ectodermal fate and the onset of neural differentiation., Yan B, Neilson KM, Moody SA., Dev Biol. May 1, 2009; 329 (1): 80-95.              


Notch signaling downstream of foxD5 promotes neural ectodermal transcription factors that inhibit neural differentiation., Yan B, Neilson KM, Moody SA., Dev Dyn. June 1, 2009; 238 (6): 1358-65.        


Dazap2 is required for FGF-mediated posterior neural patterning, independent of Wnt and Cdx function., Roche DD, Liu KJ, Harland RM, Monsoro-Burq AH., Dev Biol. September 1, 2009; 333 (1): 26-36.                              


Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis., Klymkowsky MW, Rossi CC, Artinger KB., Cell Adh Migr. January 1, 2010; 4 (4): 595-608.  


Geminin cooperates with Polycomb to restrain multi-lineage commitment in the early embryo., Lim JW, Hummert P, Mills JC, Kroll KL., Development. January 1, 2011; 138 (1): 33-44.                    


Yes-associated protein 65 (YAP) expands neural progenitors and regulates Pax3 expression in the neural plate border zone., Gee ST, Milgram SL, Kramer KL, Conlon FL, Moody SA., PLoS One. January 1, 2011; 6 (6): e20309.                  


Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm., Pieper M, Ahrens K, Rink E, Peter A, Schlosser G., Development. March 1, 2012; 139 (6): 1175-87.                    


Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate., Neilson KM, Klein SL, Mhaske P, Mood K, Daar IO, Moody SA., Dev Biol. May 15, 2012; 365 (2): 363-75.                        


WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis., Murugan S, Shan J, Kühl SJ, Tata A, Pietilä I, Kühl M, Vainio SJ., Exp Cell Res. June 10, 2012; 318 (10): 1134-45.


Suv4-20h histone methyltransferases promote neuroectodermal differentiation by silencing the pluripotency-associated Oct-25 gene., Nicetto D, Hahn M, Jung J, Schneider TD, Straub T, David R, Schotta G, Rupp RA., PLoS Genet. January 1, 2013; 9 (1): e1003188.                                                                


On becoming neural: what the embryo can tell us about differentiating neural stem cells., Moody SA, Klein SL, Karpinski BA, Maynard TM, Lamantia AS., Am J Stem Cells. June 30, 2013; 2 (2): 74-94.              


sox4 and sox11 function during Xenopus laevis eye development., Cizelsky W, Hempel A, Metzig M, Tao S, Hollemann T, Kühl M, Kühl SJ., PLoS One. July 1, 2013; 8 (7): e69372.              


Left-right patterning in Xenopus conjoined twin embryos requires serotonin signaling and gap junctions., Vandenberg LN, Blackiston DJ, Rea AC, Dore TM, Levin M., Int J Dev Biol. January 1, 2014; 58 (10-12): 799-809.                


Neural transcription factors: from embryos to neural stem cells., Lee HK, Lee HS, Moody SA., Mol Cells. October 31, 2014; 37 (10): 705-12.    


Evolutionarily conserved role for SoxC genes in neural crest specification and neuronal differentiation., Uy BR, Simoes-Costa M, Koo DE, Sauka-Spengler T, Bronner ME., Dev Biol. January 15, 2015; 397 (2): 282-92.                    


Early neural ectodermal genes are activated by Siamois and Twin during blastula stages., Klein SL, Moody SA., Genesis. May 1, 2015; 53 (5): 308-20.          


Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin-Siris syndrome., Hempel A, Pagnamenta AT, Blyth M, Mansour S, McConnell V, Kou I, Ikegawa S, Tsurusaki Y, Matsumoto N, Lo-Castro A, Plessis G, Albrecht B, Battaglia A, Taylor JC, Howard MF, Keays D, Sohal AS, [Organization not found], Kühl SJ, Kühl SJ, Kini U, McNeill A., J Med Genet. March 1, 2016; 53 (3): 152-62.          


Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm., Gaur S, Mandelbaum M, Herold M, Majumdar HD, Neilson KM, Maynard TM, Mood K, Daar IO, Moody SA., Genesis. June 1, 2016; 54 (6): 334-49.                          


Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development., Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Alfandari D, Moody SA., Dev Biol. January 15, 2017; 421 (2): 171-182.                    


The Sox transcriptional factors: Functions during intestinal development in vertebrates., Fu L, Shi YB., Semin Cell Dev Biol. March 1, 2017; 63 58-67.        


Foxd4 is essential for establishing neural cell fate and for neuronal differentiation., Sherman JH, Karpinski BA, Fralish MS, Cappuzzo JM, Dhindsa DS, Thal AG, Moody SA, LaMantia AS, Maynard TM., Genesis. June 1, 2017; 55 (6):   


Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates., Marchak A, Grant PA, Neilson KM, Datta Majumdar H, Yaklichkin S, Johnson D, Moody SA., Dev Biol. September 1, 2017; 429 (1): 213-224.                    


FGF mediated MAPK and PI3K/Akt Signals make distinct contributions to pluripotency and the establishment of Neural Crest., Geary L, LaBonne C., Elife. January 19, 2018; 7                     


Histone deacetylase activity has an essential role in establishing and maintaining the vertebrate neural crest., Rao A, LaBonne C., Development. August 8, 2018; 145 (15):                           


Identification of retinal homeobox (rax) gene-dependent genes by a microarray approach: The DNA endoglycosylase neil3 is a major downstream component of the rax genetic pathway., Pan Y, Kelly LE, El-Hodiri HM., Dev Dyn. November 1, 2018; 247 (11): 1199-1210.                            


The neural border: Induction, specification and maturation of the territory that generates neural crest cells., Pla P, Monsoro-Burq AH., Dev Biol. December 1, 2018; 444 Suppl 1 S36-S46.    


A transition from SoxB1 to SoxE transcription factors is essential for progression from pluripotent blastula cells to neural crest cells., Buitrago-Delgado E, Schock EN, Nordin K, LaBonne C., Dev Biol. December 15, 2018; 444 (2): 50-61.                


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH, Majumdar HD, Neilson KM, Moody SA., Dev Biol. February 1, 2019; 446 (1): 68-79.                      


De Novo SOX4 Variants Cause a Neurodevelopmental Disease Associated with Mild Dysmorphism., Zawerton A, Yao B, Yeager JP, Pippucci T, Haseeb A, Smith JD, Wischmann L, Kühl SJ, Dean JCS, Pilz DT, Holder SE, Deciphering Developmental Disorders Study, University of Washington Center for Mendelian Genomics, McNeill A, Graziano C, Lefebvre V., Am J Hum Genet. February 7, 2019; 104 (2): 246-259.


miR-199 plays both positive and negative regulatory roles in Xenopus eye development., Ritter RA, Ulrich CH, Brzezinska BN, Shah VV, Zamora MJ, Kelly LE, El-Hodiri HM, Sater AK., Genesis. March 1, 2020; 58 (3-4): e23354.                        


Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development., Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, Majumdar HD, Neilson KM, Moody SA., Dis Model Mech. March 3, 2020; 13 (3):                                               


Natural size variation among embryos leads to the corresponding scaling in gene expression., Leibovich A, Edri T, Klein SL, Moody SA, Fainsod A., Dev Biol. June 15, 2020; 462 (2): 165-179.                    


Comparative gene expression profiling between optic nerve and spinal cord injury in Xenopus laevis reveals a core set of genes inherent in successful regeneration of vertebrate central nervous system axons., Belrose JL, Prasad A, Sammons MA, Gibbs KM, Szaro BG., BMC Genomics. August 5, 2020; 21 (1): 540.                  


Mcrs1 interacts with Six1 to influence early craniofacial and otic development., Neilson KM, Keer S, Bousquet N, Macrorie O, Majumdar HD, Kenyon KL, Alfandari D, Alfandari D, Moody SA., Dev Biol. November 1, 2020; 467 (1-2): 39-50.                  


Combinatorial transcription factor activities on open chromatin induce embryonic heterogeneity in vertebrates., Bright AR, van Genesen S, Li Q, Grasso A, Frölich S, van der Sande M, van Heeringen SJ, Veenstra GJC., EMBO J. May 3, 2021; 40 (9): e104913.                        

???pagination.result.page??? 1 2 ???pagination.result.next???