Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (70) GO Terms (17) Nucleotides (93) Proteins (55) Interactants (642) Wiki
XB-GENEPAGE-484998

Papers associated with wt1



???displayGene.coCitedPapers???
17 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Simplifying Genotyping of Mutants from Genome Editing with a Parallel qPCR-Based iGenotype Index., Fu L, Wang S, Liu L, Shibata Y, Okada M, Luu N, Shi YB, Shi YB., Cells. January 29, 2024; 13 (3):           


Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation., Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC., Sci Rep. October 4, 2023; 13 (1): 16671.                                          


HNF1B Alters an Evolutionarily Conserved Nephrogenic Program of Target Genes., Grand K, Stoltz M, Rizzo L, Röck R, Kaminski MM, Salinas G, Getwan M, Naert T, Pichler R, Lienkamp SS., J Am Soc Nephrol. March 1, 2023; 34 (3): 412-432.                          


Appropriate Amounts and Activity of the Wilms' Tumor Suppressor Gene, wt1, Are Required for Normal Pronephros Development of Xenopus Embryos., Shiraki T, Hayashi T, Ozue J, Watanabe M., J Dev Biol. October 29, 2022; 10 (4):           


Normal Table of Xenopus development: a new graphical resource., Zahn N, James-Zorn C, Ponferrada VG, Adams DS, Grzymkowski J, Buchholz DR, Nascone-Yoder NM, Horb M, Moody SA, Vize PD, Zorn AM., Development. July 15, 2022; 149 (14):                         


The enpp4 ectonucleotidase regulates kidney patterning signalling networks in Xenopus embryos., Massé K, Bhamra S, Paroissin C, Maneta-Peyret L, Boué-Grabot E, Jones EA., Commun Biol. October 7, 2021; 4 (1): 1158.                                


Mutations in PRDM15 Are a Novel Cause of Galloway-Mowat Syndrome., Mann N, Mzoughi S, Schneider R, Kühl SJ, Schanze D, Klämbt V, Lovric S, Mao Y, Shi S, Tan W, Kühl M, Onuchic-Whitford AC, Treimer E, Kitzler TM, Kause F, Schumann S, Nakayama M, Buerger F, Shril S, van der Ven AT, Majmundar AJ, Holton KM, Kolb A, Braun DA, Rao J, Jobst-Schwan T, Mildenberger E, Lennert T, Kuechler A, Wieczorek D, Gross O, Ermisch-Omran B, Werberger A, Skalej M, Janecke AR, Soliman NA, Mane SM, Lifton RP, Kadlec J, Guccione E, Schmeisser MJ, Zenker M, Hildebrandt F., J Am Soc Nephrol. March 1, 2021; 32 (3): 580-596.    


Codon Optimization of Insect Odorant Receptor Genes May Increase Their Stable Expression for Functional Characterization in HEK293 Cells., Roberts RE, Yuvaraj JK, Andersson MN., Front Cell Neurosci. January 1, 2021; 15 744401.              


Regeneration enhancers: Starting a journey to unravel regulatory events in tissue regeneration., Rodriguez AM, Kang J., Semin Cell Dev Biol. January 1, 2020;           


Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome., Greenberg RS, Long HK, Swigut T, Wysocka J., Cell. September 5, 2019; 178 (6): 1421-1436.e24.                                


Modeling congenital kidney diseases in Xenopus laevis., Blackburn ATM, Miller RK., Dis Model Mech. April 9, 2019; 12 (4):       


Leukemia inhibitory factor signaling in Xenopus embryo: Insights from gain of function analysis and dominant negative mutant of the receptor., Jalvy S, Veschambre P, Fédou S, Rezvani HR, Thézé N, Thiébaud P., Dev Biol. March 15, 2019; 447 (2): 200-213.                                  


The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development., Espiritu EB, Crunk AE, Bais A, Hochbaum D, Cervino AS, Phua YL, Butterworth MB, Goto T, Ho J, Hukriede NA, Cirio MC., Sci Rep. October 30, 2018; 8 (1): 16029.                                      


Transcriptome analysis identifies genes involved in sex determination and development of Xenopus laevis gonads., Piprek RP, Damulewicz M, Kloc M, Kubiak JZ., Differentiation. January 1, 2018; 100 46-56.                          


Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors., Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Müller AL, Pichler R, Grahammer F, Kretz O, Huber TB, Walz G, Arnold SJ, Lienkamp SS., Nat Cell Biol. December 1, 2016; 18 (12): 1269-1280.                  


Proper Notch activity is necessary for the establishment of proximal cells and differentiation of intermediate, distal, and connecting tubule in Xenopus pronephros development., Katada T, Sakurai H., Dev Dyn. April 1, 2016; 245 (4): 472-82.                  


The Lhx9-integrin pathway is essential for positioning of the proepicardial organ., Tandon P, Wilczewski CM, Williams CE, Conlon FL., Development. March 1, 2016; 143 (5): 831-40.                                    


Using Xenopus to study genetic kidney diseases., Lienkamp SS., Semin Cell Dev Biol. March 1, 2016; 51 117-24.    


Ventricular cell fate can be specified until the onset of myocardial differentiation., Caporilli S, Latinkic BV., Mech Dev. February 1, 2016; 139 31-41.                        


Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes., Montiel EE, Badenhorst D, Lee LS, Literman R, Trifonov V, Valenzuela N., Cytogenet Genome Res. January 1, 2016; 148 (4): 292-304.


Xenbase: Core features, data acquisition, and data processing., James-Zorn C, Ponferrada VG, Burns KA, Fortriede JD, Lotay VS, Liu Y, Brad Karpinka J, Karimi K, Zorn AM, Vize PD., Genesis. August 1, 2015; 53 (8): 486-97.          


Pax8 and Pax2 are specifically required at different steps of Xenopus pronephros development., Buisson I, Le Bouffant R, Futel M, Riou JF, Umbhauer M., Dev Biol. January 15, 2015; 397 (2): 175-90.                            


Evolution of the vertebrate Pax4/6 class of genes with focus on its novel member, the Pax10 gene., Feiner N, Meyer A, Kuraku S., Genome Biol Evol. June 19, 2014; 6 (7): 1635-51.              


Stochastic specification of primordial germ cells from mesoderm precursors in axolotl embryos., Chatfield J, O'Reilly MA, Bachvarova RF, Ferjentsik Z, Redwood C, Walmsley M, Patient R, Loose M, Johnson AD., Development. June 1, 2014; 141 (12): 2429-40.              


Zygotic expression of Exostosin1 (Ext1) is required for BMP signaling and establishment of dorsal-ventral pattern in Xenopus., Shieh YE, Wells DE, Sater AK., Int J Dev Biol. January 1, 2014; 58 (1): 27-34.          


Tcf21 regulates the specification and maturation of proepicardial cells., Tandon P, Miteva YV, Kuchenbrod LM, Cristea IM, Conlon FL., Development. June 1, 2013; 140 (11): 2409-21.                                


Comparative Functional Analysis of ZFP36 Genes during Xenopus Development., Tréguer K, Faucheux C, Veschambre P, Fédou S, Thézé N, Thiébaud P., PLoS One. January 1, 2013; 8 (1): e54550.                          


WT1 and Sox11 regulate synergistically the promoter of the Wnt4 gene that encodes a critical signal for nephrogenesis., Murugan S, Shan J, Kühl SJ, Tata A, Pietilä I, Kühl M, Vainio SJ., Exp Cell Res. June 10, 2012; 318 (10): 1134-45.


Xenopus as a model system for the study of GOLPH2/GP73 function: Xenopus GOLPH2 is required for pronephros development., Li L, Wen L, Gong Y, Mei G, Liu J, Chen Y, Peng T., PLoS One. January 1, 2012; 7 (6): e38939.                                              


Lhx1 is required for specification of the renal progenitor cell field., Cirio MC, Hui Z, Haldin CE, Cosentino CC, Stuckenholz C, Chen X, Hong SK, Dawid IB, Hukriede NA., PLoS One. April 15, 2011; 6 (4): e18858.                          


Role of Tbx2 in defining the territory of the pronephric nephron., Cho GS, Choi SC, Park EC, Han JK., Development. February 1, 2011; 138 (3): 465-74.                        


Four and a half LIM protein 1C (FHL1C): a binding partner for voltage-gated potassium channel K(v1.5)., Poparic I, Schreibmayer W, Schoser B, Desoye G, Gorischek A, Miedl H, Hochmeister S, Binder J, Quasthoff S, Wagner K, Windpassinger C, Malle E., PLoS One. January 1, 2011; 6 (10): e26524.            


Notch signaling, wt1 and foxc2 are key regulators of the podocyte gene regulatory network in Xenopus., White JT, Zhang B, Cerqueira DM, Tran U, Wessely O., Development. June 1, 2010; 137 (11): 1863-73.                            


Negative feedback regulation of Wnt4 signaling by EAF1 and EAF2/U19., Wan X, Ji W, Mei X, Zhou J, Liu JX, Fang C, Xiao W., PLoS One. February 9, 2010; 5 (2): e9118.                  


The LIM domain protein Wtip interacts with the receptor tyrosine kinase Ror2 and inhibits canonical Wnt signalling., van Wijk NV, Witte F, Feike AC, Schambony A, Birchmeier W, Mundlos S, Stricker S., Biochem Biophys Res Commun. December 11, 2009; 390 (2): 211-6.  


A reverse genetic screen in the zebrafish identifies crb2b as a regulator of the glomerular filtration barrier., Ebarasi L, He L, Hultenby K, Takemoto M, Betsholtz C, Tryggvason K, Majumdar A., Dev Biol. October 1, 2009; 334 (1): 1-9.      


Connexin 43 regulates epicardial cell polarity and migration in coronary vascular development., Rhee DY, Zhao XQ, Francis RJ, Huang GY, Mably JD, Lo CW., Development. September 1, 2009; 136 (18): 3185-93.          


An integrated genome screen identifies the Wnt signaling pathway as a major target of WT1., Kim MK, McGarry TJ, O Broin P, Flatow JM, Golden AA, Licht JD., Proc Natl Acad Sci U S A. July 7, 2009; 106 (27): 11154-9.


In vitro organogenesis from undifferentiated cells in Xenopus., Asashima M, Ito Y, Chan T, Michiue T, Nakanishi M, Suzuki K, Hitachi K, Okabayashi K, Kondow A, Ariizumi T., Dev Dyn. June 1, 2009; 238 (6): 1309-20.                      


The lmx1b gene is pivotal in glomus development in Xenopus laevis., Haldin CE, Massé KL, Bhamra S, Simrick S, Kyuno J, Jones EA., Dev Biol. October 1, 2008; 322 (1): 74-85.          


A dual requirement for Iroquois genes during Xenopus kidney development., Alarcón P, Rodríguez-Seguel E, Fernández-González A, Rubio R, Gómez-Skarmeta JL., Development. October 1, 2008; 135 (19): 3197-207.                            


Mix.1/2-dependent control of FGF availability during gastrulation is essential for pronephros development in Xenopus., Colas A, Cartry J, Buisson I, Umbhauer M, Smith JC, Riou JF., Dev Biol. August 15, 2008; 320 (2): 351-65.                  


A functional screen for genes involved in Xenopus pronephros development., Kyuno J, Massé K, Jones EA., Mech Dev. July 1, 2008; 125 (7): 571-86.                                                                                      


Diversity in the origins of sex chromosomes in anurans inferred from comparative mapping of sexual differentiation genes for three species of the Raninae and Xenopodinae., Uno Y, Nishida C, Yoshimoto S, Ito M, Oshima Y, Yokoyama S, Nakamura M, Matsuda Y., Chromosome Res. January 1, 2008; 16 (7): 999-1011.


Cadherin-6 is required for zebrafish nephrogenesis during early development., Kubota F, Murakami T, Mogi K, Yorifuji H., Int J Dev Biol. January 1, 2007; 51 (2): 123-9.


Retinoic acid signalling is required for specification of pronephric cell fate., Cartry J, Nichane M, Ribes V, Colas A, Riou JF, Pieler T, Dollé P, Bellefroid EJ, Umbhauer M., Dev Biol. November 1, 2006; 299 (1): 35-51.                  


FGF is essential for both condensation and mesenchymal-epithelial transition stages of pronephric kidney tubule development., Urban AE, Zhou X, Zhou X, Ungos JM, Raible DW, Altmann CR, Vize PD., Dev Biol. September 1, 2006; 297 (1): 103-17.                    


The Notch-effector HRT1 gene plays a role in glomerular development and patterning of the Xenopus pronephros anlagen., Taelman V, Van Campenhout C, Sölter M, Pieler T, Bellefroid EJ., Development. August 1, 2006; 133 (15): 2961-71.                  


Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation., Van Campenhout C, Nichane M, Antoniou A, Pendeville H, Bronchain OJ, Marine JC, Mazabraud A, Voz ML, Bellefroid EJ., Dev Biol. June 1, 2006; 294 (1): 203-19.                


The chicken telomerase reverse transcriptase (chTERT): molecular and cytogenetic characterization with a comparative analysis., Delany ME, Daniels LM., Gene. September 15, 2004; 339 61-9.

???pagination.result.page??? 1 2 ???pagination.result.next???