Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (65) GO Terms (5) Nucleotides (74) Proteins (49) Interactants (534) Wiki
XB-GENEPAGE-487139

Papers associated with pax7



???displayGene.coCitedPapers???
3 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

referenced by:


Ash2l, an obligatory component of H3K4 methylation complexes, regulates neural crest development., Mohammadparast S, Chang C., Dev Biol. December 1, 2022; 492 14-24.                                  


Cellular responses in the FGF10-mediated improvement of hindlimb regenerative capacity in Xenopus laevis revealed by single-cell transcriptomics., Yanagi N, Kato S, Fukazawa T, Kubo T., Dev Growth Differ. August 1, 2022; 64 (6): 266-278.      


Effective enrichment of stem cells in regenerating Xenopus laevis tadpole tails using the side population method., Kato S, Kubo T, Fukazawa T., Dev Growth Differ. August 1, 2022; 64 (6): 290-296.    


Injury-induced Erk1/2 signaling tissue-specifically interacts with Ca2+ activity and is necessary for regeneration of spinal cord and skeletal muscle., Levin JB, Borodinsky LN., Cell Calcium. March 1, 2022; 102 102540.                                  


Patterns of tubb2b Promoter-Driven Fluorescence in the Forebrain of Larval Xenopus laevis., Daume D, Offner T, Hassenklöver T, Manzini I., Front Neuroanat. January 1, 2022; 16 914281.          


Bacterial lipopolysaccharides can initiate regeneration of the Xenopus tadpole tail., Bishop TF, Beck CW., iScience. November 19, 2021; 24 (11): 103281.                        


Evolution of Somite Compartmentalization: A View From Xenopus., Della Gaspera B, Weill L, Chanoine C., Front Cell Dev Biol. January 1, 2021; 9 790847.                  


Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis., Morona R, Bandín S, López JM, Moreno N, González A., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.                                                                


Disabled-2: a positive regulator of the early differentiation of myoblasts., Shang N, Lee JTY, Huang T, Wang C, Wang C, Lee TL, Mok SC, Zhao H, Chan WY., Cell Tissue Res. September 1, 2020; 381 (3): 493-508.                              


Disrupted ER membrane protein complex-mediated topogenesis drives congenital neural crest defects., Marquez J, Criscione J, Charney RM, Prasad MS, Hwang WY, Mis EK, García-Castro MI, Khokha MK., J Clin Invest. February 3, 2020; 130 (2): 813-826.                                


The various routes to functional regeneration in the central nervous system., Echeverri K., Commun Biol. January 29, 2020; 3 (1): 47.  


Lampreys, the jawless vertebrates, contain three Pax6 genes with distinct expression in eye, brain and pancreas., Ravi V, Bhatia S, Shingate P, Tay BH, Venkatesh B, Kleinjan DA., Sci Rep. December 20, 2019; 9 (1): 19559.        


More Than Just a Bandage: Closing the Gap Between Injury and Appendage Regeneration., Kakebeen AD, Wills AE., Front Physiol. January 1, 2019; 10 81.      


AKT signaling displays multifaceted functions in neural crest development., Sittewelle M, Monsoro-Burq AH., Dev Biol. December 1, 2018; 444 Suppl 1 S144-S155.


Early specification and development of rabbit neural crest cells., Betters E, Charney RM, Garcia-Castro MI., Dev Biol. December 1, 2018; 444 Suppl 1 S181-S192.


The neural border: Induction, specification and maturation of the territory that generates neural crest cells., Pla P, Monsoro-Burq AH., Dev Biol. December 1, 2018; 444 Suppl 1 S36-S46.    


Shared evolutionary origin of vertebrate neural crest and cranial placodes., Horie R, Hazbun A, Chen K, Cao C, Levine M, Horie T., Nature. August 1, 2018; 560 (7717): 228-232.      


The axolotl genome and the evolution of key tissue formation regulators., Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AWC, Pippel M, Winkler S, Hastie AR, Young G, Roscito JG, Falcon F, Knapp D, Powell S, Cruz A, Cao H, Habermann B, Hiller M, Tanaka EM, Myers EW., Nature. February 1, 2018; 554 (7690): 50-55.


Conserved gene regulatory module specifies lateral neural borders across bilaterians., Li Y, Zhao D, Horie T, Chen G, Bao H, Chen S, Liu W, Horie R, Liang T, Dong B, Feng Q, Tao Q, Tao Q, Liu X., Proc Natl Acad Sci U S A. August 1, 2017; 114 (31): E6352-E6360.      


Conservatism and variability of gene expression profiles among homeologous transcription factors in Xenopus laevis., Watanabe M, Yasuoka Y, Mawaribuchi S, Kuretani A, Ito M, Kondo M, Ochi H, Ogino H, Fukui A, Taira M, Kinoshita T., Dev Biol. June 15, 2017; 426 (2): 301-324.                          


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R, Ferran JL, Puelles L, González A., J Comp Neurol. March 1, 2017; 525 (4): 715-752.                                            


A developmentally regulated switch from stem cells to dedifferentiation for limb muscle regeneration in newts., Tanaka HV, Ng NC, Yang Yu Z, Casco-Robles MM, Maruo F, Tsonis PA, Chiba C., Nat Commun. January 12, 2016; 7 11069.        


Prdm12 specifies V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes in Xenopus., Thélie A, Desiderio S, Hanotel J, Quigley I, Van Driessche B, Rodari A, Borromeo MD, Kricha S, Lahaye F, Croce J, Cerda-Moya G, Ordoño Fernandez J, Bolle B, Lewis KE, Sander M, Pierani A, Schubert M, Johnson JE, Kintner CR, Pieler T, Van Lint C, Henningfeld KA, Bellefroid EJ, Van Campenhout C., Development. October 1, 2015; 142 (19): 3416-28.                                    


A Novel Role for VICKZ Proteins in Maintaining Epithelial Integrity during Embryogenesis., Carmel MS, Kahane N, Oberman F, Miloslavski R, Sela-Donenfeld D, Kalcheim C, Yisraeli JK., PLoS One. August 4, 2015; 10 (8): e0136408.              


The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM, Hawrot K, Sharpe C, Noble A, Wood WM, Jorge EC, Goldhamer DJ, Kardon G, Dietrich S., Front Aging Neurosci. May 19, 2015; 7 62.                                            


Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis., Bandín S, Morona R, González A., Front Neuroanat. February 3, 2015; 9 107.                                                    


Notochord-derived hedgehog is essential for tail regeneration in Xenopus tadpole., Taniguchi Y, Watanabe K, Mochii M., BMC Dev Biol. June 18, 2014; 14 27.                


Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis., Bandín S, Morona R, López JM, Moreno N, González A., J Chem Neuroanat. May 1, 2014; 57-58 24-41.


The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning., Schlosser G, Patthey C, Shimeld SM., Dev Biol. May 1, 2014; 389 (1): 98-119.            


Setting appropriate boundaries: fate, patterning and competence at the neural plate border., Groves AK, LaBonne C., Dev Biol. May 1, 2014; 389 (1): 2-12.    


Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions., Domínguez L, González A, Moreno N., J Comp Neurol. April 1, 2014; 522 (5): 1102-31.                                      


Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development., Bandín S, Morona R, Moreno N, González A., Front Neuroanat. December 24, 2013; 7 48.                    


M-cadherin-mediated intercellular interactions activate satellite cell division., Marti M, Montserrat N, Pardo C, Mulero L, Miquel-Serra L, Rodrigues AM, Andrés Vaquero J, Kuebler B, Morera C, Barrero MJ, Izpisua Belmonte JC., J Cell Sci. November 15, 2013; 126 (Pt 22): 5116-31.    


Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation., Yamane H, Nishikawa A., In Vitro Cell Dev Biol Anim. August 1, 2013; 49 (7): 524-36.


Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos., Pegoraro C, Monsoro-Burq AH., Wiley Interdiscip Rev Dev Biol. January 1, 2013; 2 (2): 247-59.      


Current perspectives of the signaling pathways directing neural crest induction., Stuhlmiller TJ, García-Castro MI., Cell Mol Life Sci. November 1, 2012; 69 (22): 3715-37.          


Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis., Havis E, Coumailleau P, Bonnet A, Bismuth K, Bonnin MA, Johnson R, Fan CM, Relaix F, Shi DL, Duprez D., Development. June 1, 2012; 139 (11): 1910-20.                    


Induction of the neural crest state: control of stem cell attributes by gene regulatory, post-transcriptional and epigenetic interactions., Prasad MS, Sauka-Spengler T, LaBonne C., Dev Biol. June 1, 2012; 366 (1): 10-21.


Myogenic waves and myogenic programs during Xenopus embryonic myogenesis., Della Gaspera B, Armand AS, Sequeira I, Chesneau A, Mazabraud A, Lécolle S, Charbonnier F, Chanoine C., Dev Dyn. May 1, 2012; 241 (5): 995-1007.                                    


Developing laryngeal muscle of Xenopus laevis as a model system: androgen-driven myogenesis controls fiber type transformation., Nasipak B, Kelley DB., Dev Neurobiol. April 1, 2012; 72 (4): 664-75.


Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis., Della Gaspera B, Armand AS, Lecolle S, Charbonnier F, Chanoine C., PLoS One. January 1, 2012; 7 (12): e52359.                  


Prx-1 expression in Xenopus laevis scarless skin-wound healing and its resemblance to epimorphic regeneration., Yokoyama H, Maruoka T, Aruga A, Amano T, Ohgo S, Shiroishi T, Tamura K., J Invest Dermatol. December 1, 2011; 131 (12): 2477-85.                        


Origin of muscle satellite cells in the Xenopus embryo., Daughters RS, Chen Y, Slack JM., Development. March 1, 2011; 138 (5): 821-30.                          


Conserved expression of mouse Six1 in the pre-placodal region (PPR) and identification of an enhancer for the rostral PPR., Sato S, Ikeda K, Shioi G, Ochi H, Ogino H, Yajima H, Kawakami K., Dev Biol. August 1, 2010; 344 (1): 158-71.  


The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos., Maczkowiak F, Matéos S, Wang E, Roche D, Harland R, Monsoro-Burq AH., Dev Biol. April 15, 2010; 340 (2): 381-96.                                                    


Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis., Klymkowsky MW, Rossi CC, Artinger KB., Cell Adh Migr. January 1, 2010; 4 (4): 595-608.  


Biphasic myopathic phenotype of mouse DUX, an ORF within conserved FSHD-related repeats., Bosnakovski D, Daughters RS, Xu Z, Slack JM, Kyba M., PLoS One. September 16, 2009; 4 (9): e7003.          


Gene expression profiles of lens regeneration and development in Xenopus laevis., Malloch EL, Perry KJ, Fukui L, Johnson VR, Wever J, Beck CW, King MW, King MW, Henry JJ., Dev Dyn. September 1, 2009; 238 (9): 2340-56.                                    


Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation., Merrick D, Stadler LK, Larner D, Smith J., Dis Model Mech. January 1, 2009; 2 (7-8): 374-88.


TGF-beta signaling is required for multiple processes during Xenopus tail regeneration., Ho DM, Whitman M., Dev Biol. March 1, 2008; 315 (1): 203-16.                  

???pagination.result.page??? 1 2 ???pagination.result.next???