Results 1 - 42 of 42 results
Cell landscape of larval and adult Xenopus laevis at single-cell resolution. , Liao Y, Ma L, Guo Q, E W, Fang X, Yang L, Ruan F, Wang J , Zhang P, Sun Z, Chen H, Lin Z, Wang X , Wang X , Sun H, Fang X, Zhou Y, Chen M, Shen W, Guo G, Han X., Nat Commun. July 25, 2022; 13 (1): 4306.
Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment. , Satou-Kobayashi Y, Kim JD , Fukamizu A, Asashima M ., Sci Rep. July 15, 2021; 11 (1): 14537.
The SNPs in myoD gene from normal muscle developing individuals have no effect on muscle mass. , Ding S, Nie Y, Zhang X, Liu X, Wang C , Wang C , Yuan R, Chen K, Zhu Q, Cai S, Fang Y, Chen Y , Chen Y , Mo D., BMC Genet. September 2, 2019; 20 (1): 72.
Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation. , Kho M, Shi H , Nie S ., Front Physiol. February 1, 2019; 10 542.
Xenopus SOX5 enhances myogenic transcription indirectly through transrepression. , Della Gaspera B , Chesneau A, Weill L, Charbonnier F, Chanoine C ., Dev Biol. October 15, 2018; 442 (2): 262-275.
Regulation of nuclear factor of activated T cells (NFAT) and downstream myogenic proteins during dehydration in the African clawed frog. , Zhang Y , English SG, Storey KB ., Mol Biol Rep. October 1, 2018; 45 (5): 751-761.
FoxO4 activity is regulated by phosphorylation and the cellular environment during dehydration in the African clawed frog, Xenopus laevis. , Zhang Y , Luu BE, Storey KB ., Biochim Biophys Acta Gen Subj. August 1, 2018; 1862 (8): 1721-1728.
Id genes are essential for early heart formation. , Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF , Umbhauer M , Duester G , Mercola M , Colas AR., Genes Dev. July 1, 2017; 31 (13): 1325-1338.
Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis. , Sabillo A, Ramirez J, Domingo CR ., Semin Cell Dev Biol. March 1, 2016; 51 80-91.
Klhl31 attenuates β-catenin dependent Wnt signaling and regulates embryo myogenesis. , Abou-Elhamd A, Alrefaei AF, Mok GF, Garcia-Morales C, Abu-Elmagd M, Wheeler GN , Münsterberg AE., Dev Biol. June 1, 2015; 402 (1): 61-71.
Apoptosis and differentiation of Xenopus tail-derived myoblasts by thyroid hormone. , Tamura K , Takayama S, Ishii T, Mawaribuchi S, Takamatsu N, Ito M., J Mol Endocrinol. June 1, 2015; 54 (3): 185-92.
The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development. , Nogueira JM, Hawrot K, Sharpe C , Noble A , Wood WM, Jorge EC, Goldhamer DJ, Kardon G, Dietrich S., Front Aging Neurosci. May 19, 2015; 7 62.
myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis. , Goljanek-Whysall K, Mok GF, Fahad Alrefaei A, Kennerley N, Wheeler GN , Münsterberg A., Development. September 1, 2014; 141 (17): 3378-87.
Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation. , Yamane H, Nishikawa A., In Vitro Cell Dev Biol Anim. August 1, 2013; 49 (7): 524-36.
Myogenic waves and myogenic programs during Xenopus embryonic myogenesis. , Della Gaspera B , Armand AS, Sequeira I, Chesneau A, Mazabraud A , Lécolle S, Charbonnier F, Chanoine C ., Dev Dyn. May 1, 2012; 241 (5): 995-1007.
Developing laryngeal muscle of Xenopus laevis as a model system: androgen-driven myogenesis controls fiber type transformation. , Nasipak B, Kelley DB ., Dev Neurobiol. April 1, 2012; 72 (4): 664-75.
Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae. , Rodrigues AM, Christen B , Martí M, Izpisúa Belmonte JC ., BMC Dev Biol. February 27, 2012; 12 9.
SB431542 treatment promotes the hypertrophy of skeletal muscle fibers but decreases specific force. , Watt KI, Jaspers RT, Atherton P, Smith K, Rennie MJ, Ratkevicius A, Wackerhage H., Muscle Nerve. May 1, 2010; 41 (5): 624-9.
Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation. , Srsen V, Fant X, Heald R , Rabouille C, Merdes A., BMC Cell Biol. April 13, 2009; 10 28.
Pbx homeodomain proteins direct Myod activity to promote fast- muscle differentiation. , Maves L, Waskiewicz AJ, Paul B , Cao Y , Tyler A, Moens CB, Tapscott SJ ., Development. September 1, 2007; 134 (18): 3371-82.
Differential effects of muscle fibre length and insulin on muscle-specific mRNA content in isolated mature muscle fibres during long-term culture. , Jaspers RT, Feenstra HM, van Beek-Harmsen BJ, Huijing PA, van der Laarse WJ., Cell Tissue Res. December 1, 2006; 326 (3): 795-808.
Characteristics of initiation and early events for muscle development in the Xenopus limb bud. , Satoh A , Sakamaki K, Ide H , Tamura K , Tamura K ., Dev Dyn. December 1, 2005; 234 (4): 846-57.
Myocardin is sufficient and necessary for cardiac gene expression in Xenopus. , Small EM , Warkman AS , Wang DZ, Sutherland LB , Olson EN , Krieg PA ., Development. March 1, 2005; 132 (5): 987-97.
Temperature and the expression of myogenic regulatory factors (MRFs) and myosin heavy chain isoforms during embryogenesis in the common carp Cyprinus carpio L. , Cole NJ, Hall TE, Martin CI, Chapman MA, Kobiyama A, Nihei Y, Watabe S, Johnston IA., J Exp Biol. November 1, 2004; 207 (Pt 24): 4239-48.
Specific activation of the acetylcholine receptor subunit genes by MyoD family proteins. , Charbonnier F, Della Gaspara B , Armand AS, Lécolle S, Launay T, Gallien CL, Chanoine C ., J Biol Chem. August 29, 2003; 278 (35): 33169-74.
Xenopus muscle development: from primary to secondary myogenesis. , Chanoine C , Hardy S ., Dev Dyn. January 1, 2003; 226 (1): 12-23.
Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm. , Yang J , Mei W, Otto A, Xiao L, Tao Q , Tao Q , Geng X, Rupp RA , Ding X., Mech Dev. July 1, 2002; 115 (1-2): 79-89.
Hes6 regulates myogenic differentiation. , Cossins J, Vernon AE, Zhang Y , Philpott A , Jones PH., Development. May 1, 2002; 129 (9): 2195-207.
Two myogenin-related genes are differentially expressed in Xenopus laevis myogenesis and differ in their ability to transactivate muscle structural genes. , Charbonnier F, Gaspera BD, Armand AS, Van der Laarse WJ, Launay T, Becker C, Gallien CL, Chanoine C ., J Biol Chem. January 11, 2002; 277 (2): 1139-47.
The small muscle-specific protein Csl modifies cell shape and promotes myocyte fusion in an insulin-like growth factor 1-dependent manner. , Palmer S, Groves N, Schindeler A, Yeoh T, Biben C, Wang CC , Sparrow DB , Barnett L, Jenkins NA, Copeland NG, Koentgen F, Mohun T, Harvey RP ., J Cell Biol. May 28, 2001; 153 (5): 985-98.
Murine homologs of deltex define a novel gene family involved in vertebrate Notch signaling and neurogenesis. , Kishi N, Tang Z, Maeda Y, Hirai A, Mo R, Ito M, Suzuki S, Nakao K, Kinoshita T, Kadesch T, Hui C, Artavanis-Tsakonas S, Okano H, Matsuno K., Int J Dev Neurosci. February 1, 2001; 19 (1): 21-35.
Muscle regulatory factor gene: zebrafish (Danio rerio) myogenin cDNA. , Chen YH , Lee WC, Cheng CH, Tsai HJ., Comp Biochem Physiol B Biochem Mol Biol. September 1, 2000; 127 (1): 97-103.
Neural and hormonal control of expression of myogenic regulatory factor genes during regeneration of Xenopus fast muscles: myogenin and MRF4 mRNA accumulation are neurally regulated oppositely. , Nicolas N, Mira JC, Gallien CL, Chanoine C ., Dev Dyn. May 1, 2000; 218 (1): 112-22.
Long-term denervation modulates differentially the accumulation of myogenin and MRF4 mRNA in adult Xenopus muscle. , Nicolas N, Mira JC, Gallien CL, Chanoine C ., Neurosci Lett. December 24, 1999; 277 (2): 107-10.
Expression of myogenic regulatory factors during muscle development of Xenopus: myogenin mRNA accumulation is limited strictly to secondary myogenesis. , Nicolas N, Gallien CL, Chanoine C ., Dev Dyn. November 1, 1998; 213 (3): 309-21.
Analysis of MyoD, myogenin, and muscle-specific gene mRNAs in regenerating Xenopus skeletal muscle. , Nicolas N, Gallien CL, Chanoine C ., Dev Dyn. September 1, 1996; 207 (1): 60-8.
Myogenic differentiation triggered by antisense acidic fibroblast growth factor RNA. , Fox JC, Hsu AY, Swain JL., Mol Cell Biol. June 1, 1994; 14 (6): 4244-50.
A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. , Breitbart RE, Liang CS, Smoot LB, Laheru DA, Mahdavi V, Nadal-Ginard B., Development. August 1, 1993; 118 (4): 1095-106.
Expression of the myogenic gene MRF4 during Xenopus development. , Jennings CG., Dev Biol. May 1, 1992; 151 (1): 319-32.
The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA. , Buonanno A, Apone L, Morasso MI, Beers R, Brenner HR, Eftimie R., Nucleic Acids Res. February 11, 1992; 20 (3): 539-44.
Xenopus Myf-5 marks early muscle cells and can activate muscle genes ectopically in early embryos. , Hopwood ND , Pluck A, Gurdon JB ., Development. February 1, 1991; 111 (2): 551-60.
Two distinct Xenopus genes with homology to MyoD1 are expressed before somite formation in early embryogenesis. , Scales JB , Olson EN , Perry M ., Mol Cell Biol. April 1, 1990; 10 (4): 1516-24.