Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (42) GO Terms (13) Nucleotides (115) Proteins (54) Interactants (415) Wiki

Papers associated with myog

Limit to papers also referencing gene:
3 paper(s) referencing morpholinos

Results 1 - 42 of 42 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Cell landscape of larval and adult Xenopus laevis at single-cell resolution., Liao Y, Ma L, Guo Q, E W, Fang X, Yang L, Ruan F, Wang J, Zhang P, Sun Z, Chen H, Lin Z, Wang X, Wang X, Sun H, Fang X, Zhou Y, Chen M, Shen W, Guo G, Han X., Nat Commun. July 25, 2022; 13 (1): 4306.                                                        

Temporal transcriptomic profiling reveals dynamic changes in gene expression of Xenopus animal cap upon activin treatment., Satou-Kobayashi Y, Kim JD, Fukamizu A, Asashima M., Sci Rep. July 15, 2021; 11 (1): 14537.          

The SNPs in myoD gene from normal muscle developing individuals have no effect on muscle mass., Ding S, Nie Y, Zhang X, Liu X, Wang C, Wang C, Yuan R, Chen K, Zhu Q, Cai S, Fang Y, Chen Y, Chen Y, Mo D., BMC Genet. September 2, 2019; 20 (1): 72.      

Cdc42 Effector Protein 3 Interacts With Cdc42 in Regulating Xenopus Somite Segmentation., Kho M, Shi H, Nie S., Front Physiol. February 1, 2019; 10 542.          

Xenopus SOX5 enhances myogenic transcription indirectly through transrepression., Della Gaspera B, Chesneau A, Weill L, Charbonnier F, Chanoine C., Dev Biol. October 15, 2018; 442 (2): 262-275.                    

Regulation of nuclear factor of activated T cells (NFAT) and downstream myogenic proteins during dehydration in the African clawed frog., Zhang Y, English SG, Storey KB., Mol Biol Rep. October 1, 2018; 45 (5): 751-761.

FoxO4 activity is regulated by phosphorylation and the cellular environment during dehydration in the African clawed frog, Xenopus laevis., Zhang Y, Luu BE, Storey KB., Biochim Biophys Acta Gen Subj. August 1, 2018; 1862 (8): 1721-1728.            

Id genes are essential for early heart formation., Cunningham TJ, Yu MS, McKeithan WL, Spiering S, Carrette F, Huang CT, Bushway PJ, Tierney M, Albini S, Giacca M, Mano M, Puri PL, Sacco A, Ruiz-Lozano P, Riou JF, Umbhauer M, Duester G, Mercola M, Colas AR., Genes Dev. July 1, 2017; 31 (13): 1325-1338.                

Making muscle: Morphogenetic movements and molecular mechanisms of myogenesis in Xenopus laevis., Sabillo A, Ramirez J, Domingo CR., Semin Cell Dev Biol. March 1, 2016; 51 80-91.

Klhl31 attenuates β-catenin dependent Wnt signaling and regulates embryo myogenesis., Abou-Elhamd A, Alrefaei AF, Mok GF, Garcia-Morales C, Abu-Elmagd M, Wheeler GN, Münsterberg AE., Dev Biol. June 1, 2015; 402 (1): 61-71.              

Apoptosis and differentiation of Xenopus tail-derived myoblasts by thyroid hormone., Tamura K, Takayama S, Ishii T, Mawaribuchi S, Takamatsu N, Ito M., J Mol Endocrinol. June 1, 2015; 54 (3): 185-92.

The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development., Nogueira JM, Hawrot K, Sharpe C, Noble A, Wood WM, Jorge EC, Goldhamer DJ, Kardon G, Dietrich S., Front Aging Neurosci. May 19, 2015; 7 62.                                            

myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis., Goljanek-Whysall K, Mok GF, Fahad Alrefaei A, Kennerley N, Wheeler GN, Münsterberg A., Development. September 1, 2014; 141 (17): 3378-87.            

Differential muscle regulatory factor gene expression between larval and adult myogenesis in the frog Xenopus laevis: adult myogenic cell-specific myf5 upregulation and its relation to the notochord suppression of adult muscle differentiation., Yamane H, Nishikawa A., In Vitro Cell Dev Biol Anim. August 1, 2013; 49 (7): 524-36.

Myogenic waves and myogenic programs during Xenopus embryonic myogenesis., Della Gaspera B, Armand AS, Sequeira I, Chesneau A, Mazabraud A, Lécolle S, Charbonnier F, Chanoine C., Dev Dyn. May 1, 2012; 241 (5): 995-1007.                                    

Developing laryngeal muscle of Xenopus laevis as a model system: androgen-driven myogenesis controls fiber type transformation., Nasipak B, Kelley DB., Dev Neurobiol. April 1, 2012; 72 (4): 664-75.

Skeletal muscle regeneration in Xenopus tadpoles and zebrafish larvae., Rodrigues AM, Christen B, Martí M, Izpisúa Belmonte JC., BMC Dev Biol. February 27, 2012; 12 9.                  

SB431542 treatment promotes the hypertrophy of skeletal muscle fibers but decreases specific force., Watt KI, Jaspers RT, Atherton P, Smith K, Rennie MJ, Ratkevicius A, Wackerhage H., Muscle Nerve. May 1, 2010; 41 (5): 624-9.

Centrosome proteins form an insoluble perinuclear matrix during muscle cell differentiation., Srsen V, Fant X, Heald R, Rabouille C, Merdes A., BMC Cell Biol. April 13, 2009; 10 28.            

Pbx homeodomain proteins direct Myod activity to promote fast-muscle differentiation., Maves L, Waskiewicz AJ, Paul B, Cao Y, Tyler A, Moens CB, Tapscott SJ., Development. September 1, 2007; 134 (18): 3371-82.

Differential effects of muscle fibre length and insulin on muscle-specific mRNA content in isolated mature muscle fibres during long-term culture., Jaspers RT, Feenstra HM, van Beek-Harmsen BJ, Huijing PA, van der Laarse WJ., Cell Tissue Res. December 1, 2006; 326 (3): 795-808.

Characteristics of initiation and early events for muscle development in the Xenopus limb bud., Satoh A, Sakamaki K, Ide H, Tamura K, Tamura K., Dev Dyn. December 1, 2005; 234 (4): 846-57.            

Myocardin is sufficient and necessary for cardiac gene expression in Xenopus., Small EM, Warkman AS, Wang DZ, Sutherland LB, Olson EN, Krieg PA., Development. March 1, 2005; 132 (5): 987-97.            

Temperature and the expression of myogenic regulatory factors (MRFs) and myosin heavy chain isoforms during embryogenesis in the common carp Cyprinus carpio L., Cole NJ, Hall TE, Martin CI, Chapman MA, Kobiyama A, Nihei Y, Watabe S, Johnston IA., J Exp Biol. November 1, 2004; 207 (Pt 24): 4239-48.

Specific activation of the acetylcholine receptor subunit genes by MyoD family proteins., Charbonnier F, Della Gaspara B, Armand AS, Lécolle S, Launay T, Gallien CL, Chanoine C., J Biol Chem. August 29, 2003; 278 (35): 33169-74.          

Xenopus muscle development: from primary to secondary myogenesis., Chanoine C, Hardy S., Dev Dyn. January 1, 2003; 226 (1): 12-23.  

Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm., Yang J, Mei W, Otto A, Xiao L, Tao Q, Tao Q, Geng X, Rupp RA, Ding X., Mech Dev. July 1, 2002; 115 (1-2): 79-89.              

Hes6 regulates myogenic differentiation., Cossins J, Vernon AE, Zhang Y, Philpott A, Jones PH., Development. May 1, 2002; 129 (9): 2195-207.          

Two myogenin-related genes are differentially expressed in Xenopus laevis myogenesis and differ in their ability to transactivate muscle structural genes., Charbonnier F, Gaspera BD, Armand AS, Van der Laarse WJ, Launay T, Becker C, Gallien CL, Chanoine C., J Biol Chem. January 11, 2002; 277 (2): 1139-47.              

The small muscle-specific protein Csl modifies cell shape and promotes myocyte fusion in an insulin-like growth factor 1-dependent manner., Palmer S, Groves N, Schindeler A, Yeoh T, Biben C, Wang CC, Sparrow DB, Barnett L, Jenkins NA, Copeland NG, Koentgen F, Mohun T, Harvey RP., J Cell Biol. May 28, 2001; 153 (5): 985-98.                    

Murine homologs of deltex define a novel gene family involved in vertebrate Notch signaling and neurogenesis., Kishi N, Tang Z, Maeda Y, Hirai A, Mo R, Ito M, Suzuki S, Nakao K, Kinoshita T, Kadesch T, Hui C, Artavanis-Tsakonas S, Okano H, Matsuno K., Int J Dev Neurosci. February 1, 2001; 19 (1): 21-35.

Muscle regulatory factor gene: zebrafish (Danio rerio) myogenin cDNA., Chen YH, Lee WC, Cheng CH, Tsai HJ., Comp Biochem Physiol B Biochem Mol Biol. September 1, 2000; 127 (1): 97-103.

Neural and hormonal control of expression of myogenic regulatory factor genes during regeneration of Xenopus fast muscles: myogenin and MRF4 mRNA accumulation are neurally regulated oppositely., Nicolas N, Mira JC, Gallien CL, Chanoine C., Dev Dyn. May 1, 2000; 218 (1): 112-22.          

Long-term denervation modulates differentially the accumulation of myogenin and MRF4 mRNA in adult Xenopus muscle., Nicolas N, Mira JC, Gallien CL, Chanoine C., Neurosci Lett. December 24, 1999; 277 (2): 107-10.

Expression of myogenic regulatory factors during muscle development of Xenopus: myogenin mRNA accumulation is limited strictly to secondary myogenesis., Nicolas N, Gallien CL, Chanoine C., Dev Dyn. November 1, 1998; 213 (3): 309-21.

Analysis of MyoD, myogenin, and muscle-specific gene mRNAs in regenerating Xenopus skeletal muscle., Nicolas N, Gallien CL, Chanoine C., Dev Dyn. September 1, 1996; 207 (1): 60-8.

Myogenic differentiation triggered by antisense acidic fibroblast growth factor RNA., Fox JC, Hsu AY, Swain JL., Mol Cell Biol. June 1, 1994; 14 (6): 4244-50.

A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage., Breitbart RE, Liang CS, Smoot LB, Laheru DA, Mahdavi V, Nadal-Ginard B., Development. August 1, 1993; 118 (4): 1095-106.

Expression of the myogenic gene MRF4 during Xenopus development., Jennings CG., Dev Biol. May 1, 1992; 151 (1): 319-32.            

The MyoD family of myogenic factors is regulated by electrical activity: isolation and characterization of a mouse Myf-5 cDNA., Buonanno A, Apone L, Morasso MI, Beers R, Brenner HR, Eftimie R., Nucleic Acids Res. February 11, 1992; 20 (3): 539-44.

Xenopus Myf-5 marks early muscle cells and can activate muscle genes ectopically in early embryos., Hopwood ND, Pluck A, Gurdon JB., Development. February 1, 1991; 111 (2): 551-60.                

Two distinct Xenopus genes with homology to MyoD1 are expressed before somite formation in early embryogenesis., Scales JB, Olson EN, Perry M., Mol Cell Biol. April 1, 1990; 10 (4): 1516-24.

Page(s): 1