Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (60) GO Terms (5) Nucleotides (73) Proteins (58) Interactants (204) Wiki
XB-GENEPAGE-5993002

Papers associated with kcnt1



???displayGene.coCitedPapers???
2 ???displayGene.morpholinoPapers???

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???

Sort Newest To Oldest Sort Oldest To Newest

Advancements in the use of xenopus oocytes for modelling neurological disease for novel drug discovery., O'Connor EC, Kambara K, Bertrand D., Expert Opin Drug Discov. February 1, 2024; 19 (2): 173-187.      


Functional evaluation of epilepsy-associated KCNT1 variants in multiple cellular systems reveals a predominant gain of function impact on channel properties., Hinckley CA, Zhu Z, Chu JH, Gubbels C, Danker T, Cherry JJ, Whelan CD, Engle SJ, Nguyen V., Epilepsia. May 13, 2023;


Bioelectric signaling: Reprogrammable circuits underlying embryogenesis, regeneration, and cancer., Levin M., Cell. April 15, 2021;               


Cohesin and condensin extrude DNA loops in a cell cycle-dependent manner., Golfier S, Quail T, Kimura H, Brugués J., Elife. May 12, 2020; 9                                         


Lack of response to quinidine in KCNT1-related neonatal epilepsy., Numis AL, Nair U, Datta AN, Sands TT, Oldham MS, Patel A, Li M, Gazina E, Petrou S, Cilio MR., Epilepsia. October 1, 2018; 59 (10): 1889-1898.


Clinical and molecular characterization of KCNT1-related severe early-onset epilepsy., McTague A, Nair U, Malhotra S, Meyer E, Trump N, Gazina EV, Papandreou A, Ngoh A, Ackermann S, Ambegaonkar G, Appleton R, Desurkar A, Eltze C, Kneen R, Kumar AV, Lascelles K, Montgomery T, Ramesh V, Samanta R, Scott RH, Tan J, Whitehouse W, Poduri A, Scheffer IE, Chong WKK, Cross JH, Topf M, Petrou S, Kurian MA., Neurology. January 2, 2018; 90 (1): e55-e66.        


Lethal digenic mutations in the K+ channels Kir4.1 (KCNJ10) and SLACK (KCNT1) associated with severe-disabling seizures and neurodevelopmental delay., Hasan S, Balobaid A, Grottesi A, Dabbagh O, Cenciarini M, Rawashdeh R, Al-Sagheir A, Bove C, Macchioni L, Pessia M, Al-Owain M, D'Adamo MC., J Neurophysiol. October 1, 2017; 118 (4): 2402-2411.


Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes., Hockman D, Burns AJ, Schlosser G, Gates KP, Jevans B, Mongera A, Fisher S, Unlu G, Knapik EW, Kaufman CK, Mosimann C, Zon LI, Lancman JJ, Dong PDS, Lickert H, Tucker AS, Baker CV., Elife. April 7, 2017; 6                 


Genomic integration of Wnt/β-catenin and BMP/Smad1 signaling coordinates foregut and hindgut transcriptional programs., Stevens ML, Chaturvedi P, Rankin SA, Rankin SA, Macdonald M, Jagannathan S, Yukawa M, Barski A, Zorn AM., Development. April 1, 2017; 144 (7): 1283-1295.                            


Molecular mechanisms of Slo2 K+ channel closure., Giese MH, Gardner A, Hansen A, Sanguinetti MC., J Physiol. April 1, 2017; 595 (7): 2321-2336.


Heteromeric Slick/Slack K+ channels show graded sensitivity to cell volume changes., Tejada MA, Hashem N, Calloe K, Klaerke DA., PLoS One. February 21, 2017; 12 (2): e0169914.        


The histone methyltransferase Setd7 promotes pancreatic progenitor identity., Kofent J, Zhang J, Spagnoli FM., Development. October 1, 2016; 143 (19): 3573-3581.                        


Stimulation of Slack K(+) Channels Alters Mass at the Plasma Membrane by Triggering Dissociation of a Phosphatase-Regulatory Complex., Fleming MR, Brown MR, Kronengold J, Zhang Y, Jenkins DP, Barcia G, Nabbout R, Bausch AE, Ruth P, Lukowski R, Navaratnam DS, Kaczmarek LK., Cell Rep. August 30, 2016; 16 (9): 2281-8.


Xenopus Limb bud morphogenesis., Keenan SR, Beck CW., Dev Dyn. March 1, 2016; 245 (3): 233-43.            


Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms., Tang QY, Zhang FF, Xu J, Wang R, Chen J, Logothetis DE, Zhang Z., Cell Rep. January 5, 2016; 14 (1): 129-139.


Identification of the Intracellular Na+ Sensor in Slo2.1 Potassium Channels., Thomson SJ, Hansen A, Sanguinetti MC., J Biol Chem. June 5, 2015; 290 (23): 14528-35.


Development of the vertebrate tailbud., Beck CW., Wiley Interdiscip Rev Dev Biol. January 1, 2015; 4 (1): 33-44.        


Human slack potassium channel mutations increase positive cooperativity between individual channels., Kim GE, Kronengold J, Barcia G, Quraishi IH, Martin HC, Blair E, Taylor JC, Dulac O, Colleaux L, Nabbout R, Kaczmarek LK., Cell Rep. December 11, 2014; 9 (5): 1661-1672.          


KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine., Milligan CJ, Li M, Gazina EV, Heron SE, Nair U, Trager C, Reid CA, Venkat A, Younkin DP, Dlugos DJ, Petrovski S, Goldstein DB, Dibbens LM, Scheffer IE, Berkovic SF, Petrou S., Ann Neurol. April 1, 2014; 75 (4): 581-90.


Cell volume changes regulate slick (Slo2.1), but not slack (Slo2.2) K+ channels., Tejada MA, Stople K, Hammami Bomholtz S, Meinild AK, Poulsen AN, Klaerke DA., PLoS One. January 1, 2014; 9 (10): e110833.        


De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy., Barcia G, Fleming MR, Deligniere A, Gazula VR, Brown MR, Langouet M, Chen H, Kronengold J, Abhyankar A, Cilio R, Nitschke P, Kaminska A, Boddaert N, Casanova JL, Desguerre I, Munnich A, Dulac O, Kaczmarek LK, Colleaux L, Nabbout R., Nat Genet. November 1, 2012; 44 (11): 1255-9.


PIP₂ modulation of Slick and Slack K⁺ channels., de los Angeles Tejada M, Jensen LJ, Klaerke DA., Biochem Biophys Res Commun. July 27, 2012; 424 (2): 208-13.


The cellular basis for animal regeneration., Tanaka EM, Reddien PW., Dev Cell. July 19, 2011; 21 (1): 172-85.  


Calculation of muscle maximal shortening velocity by extrapolation of the force-velocity relationship: afterloaded versus isotonic release contractions., Bullimore SR, Saunders TJ, Herzog W, MacIntosh BR., Can J Physiol Pharmacol. October 1, 2010; 88 (10): 937-48.


The RCK2 domain uses a coordination site present in Kir channels to confer sodium sensitivity to Slo2.2 channels., Zhang Z, Rosenhouse-Dantsker A, Tang QY, Noskov S, Logothetis DE., J Neurosci. June 2, 2010; 30 (22): 7554-62.


Ectophosphodiesterase/nucleotide phosphohydrolase (Enpp) nucleotidases: cloning, conservation and developmental restriction., Massé K, Bhamra S, Allsop G, Dale N, Jones EA., Int J Dev Biol. January 1, 2010; 54 (1): 181-93.                        


Downstream of FGF during mesoderm formation in Xenopus: the roles of Elk-1 and Egr-1., Nentwich O, Dingwell KS, Nordheim A, Smith JC., Dev Biol. December 15, 2009; 336 (2): 313-26.          


The N-terminal domain of Slack determines the formation and trafficking of Slick/Slack heteromeric sodium-activated potassium channels., Chen H, Kronengold J, Yan Y, Gazula VR, Brown MR, Ma L, Ferreira G, Yang Y, Bhattacharjee A, Sigworth FJ, Salkoff L, Kaczmarek LK., J Neurosci. April 29, 2009; 29 (17): 5654-65.


Amino-termini isoforms of the Slack K+ channel, regulated by alternative promoters, differentially modulate rhythmic firing and adaptation., Brown MR, Kronengold J, Gazula VR, Spilianakis CG, Flavell RA, von Hehn CA, Bhattacharjee A, Kaczmarek LK., J Physiol. November 1, 2008; 586 (21): 5161-79.


Hypertrophy of mature Xenopus muscle fibres in culture induced by synergy of albumin and insulin., Jaspers RT, van Beek-Harmsen BJ, Blankenstein MA, Goldspink G, Huijing PA, van der Laarse WJ., Pflugers Arch. October 1, 2008; 457 (1): 161-70.


Induction into the Hall of Fame: tracing the lineage of Spemann's organizer., Harland R., Development. October 1, 2008; 135 (20): 3321-3.  


Intrinsic electrostatic potential in the BK channel pore: role in determining single channel conductance and block., Carvacho I, Gonzalez W, Torres YP, Brauchi S, Alvarez O, Gonzalez-Nilo FD, Latorre R., J Gen Physiol. February 1, 2008; 131 (2): 147-61.                        


The sodium-activated potassium channel Slack is modulated by hypercapnia and acidosis., Ruffin VA, Gu XQ, Zhou D, Douglas RM, Sun X, Trouth CO, Haddad GG., Neuroscience. January 24, 2008; 151 (2): 410-8.


Differential effects of muscle fibre length and insulin on muscle-specific mRNA content in isolated mature muscle fibres during long-term culture., Jaspers RT, Feenstra HM, van Beek-Harmsen BJ, Huijing PA, van der Laarse WJ., Cell Tissue Res. December 1, 2006; 326 (3): 795-808.


Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles., Beck CW, Christen B, Barker D, Slack JM., Mech Dev. September 1, 2006; 123 (9): 674-88.              


Pharmacological activation and inhibition of Slack (Slo2.2) channels., Yang B, Gribkoff VK, Pan J, Damagnez V, Dworetzky SI, Boissard CG, Bhattacharjee A, Yan Y, Sigworth FJ, Kaczmarek LK., Neuropharmacology. September 1, 2006; 51 (4): 896-906.


Developmental expression of FoxJ1.2, FoxJ2, and FoxQ1 in Xenopus tropicalis., Choi VM, Harland RM, Khokha MK., Gene Expr Patterns. June 1, 2006; 6 (5): 443-7.      


Opposite regulation of Slick and Slack K+ channels by neuromodulators., Santi CM, Ferreira G, Yang B, Gazula VR, Butler A, Wei A, Kaczmarek LK, Salkoff L., J Neurosci. May 10, 2006; 26 (19): 5059-68.


Effects of strain on contractile force and number of sarcomeres in series of Xenopus laevis single muscle fibres during long-term culture., Jaspers RT, Feenstra HM, Verheyen AK, van der Laarse WJ, Huijing PA., J Muscle Res Cell Motil. January 1, 2004; 25 (4-5): 285-96.


The sodium-activated potassium channel is encoded by a member of the Slo gene family., Yuan A, Santi CM, Wei A, Wang ZW, Pollak K, Nonet M, Kaczmarek L, Crowder CM, Salkoff L., Neuron. March 6, 2003; 37 (5): 765-73.


Redundant early and overlapping larval roles of Xsox17 subgroup genes in Xenopus endoderm development., Clements D, Cameleyre I, Woodland HR., Mech Dev. March 1, 2003; 120 (3): 337-48.            


Primitive and definitive blood share a common origin in Xenopus: a comparison of lineage techniques used to construct fate maps., Lane MC, Sheets MD., Dev Biol. August 1, 2002; 248 (1): 52-67.                  


Notch is required for outgrowth of the Xenopus tail bud., Beck CW, Slack JM., Int J Dev Biol. March 1, 2002; 46 (2): 255-8.


Neural induction takes a transcriptional twist., Bainter JJ, Boos A, Kroll KL., Dev Dyn. November 1, 2001; 222 (3): 315-27.  


Changes in embryonic cell fate produced by expression of an endodermal transcription factor, Xsox17., Clements D, Woodland HR., Mech Dev. December 1, 2000; 99 (1-2): 65-70.        


Spatial and temporal properties of ventral blood island induction in Xenopus laevis., Kumano G, Belluzzi L, Smith WC., Development. December 1, 1999; 126 (23): 5327-37.                


The origins of primitive blood in Xenopus: implications for axial patterning., Lane MC, Smith WC., Development. February 1, 1999; 126 (3): 423-34.            


The homeobox-containing gene XANF-1 may control development of the Spemann organizer., Zaraisky AG, Ecochard V, Kazanskaya OV, Lukyanov SA, Fesenko IV, Duprat AM., Development. November 1, 1995; 121 (11): 3839-47.        


Reduced maximum shortening velocity in the absence of phosphocreatine observed in intact fibres of Xenopus skeletal muscle., Westerblad H, Lännergren J., J Physiol. January 15, 1995; 482 ( Pt 2) 383-90.


Differential perturbations in the morphogenesis of anterior structures induced by overexpression of truncated XB- and N-cadherins in Xenopus embryos., Dufour S, Saint-Jeannet JP, Broders F, Wedlich D, Thiery JP., J Cell Biol. October 1, 1994; 127 (2): 521-35.                

???pagination.result.page??? 1 2 ???pagination.result.next???