Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (42) GO Terms (20) Nucleotides (42) Proteins (25) Interactants (28) Wiki
XB-GENEPAGE-6085853

Papers associated with clcn1



???displayGene.coCitedPapers???

???pagination.result.count???

???pagination.result.page??? 1

Sort Newest To Oldest Sort Oldest To Newest

Functional and Structural Characterization of ClC-1 and Nav1.4 Channels Resulting from CLCN1 and SCN4A Mutations Identified Alone and Coexisting in Myotonic Patients., Brenes O, Barbieri R, Vásquez M, Vindas-Smith R, Roig J, Romero A, Valle GD, Bermúdez-Guzmán L, Bertelli S, Pusch M, Morales F., Cells. February 11, 2021; 10 (2):           


CLCN1 Myotonia congenita mutation with a variable pattern of inheritance suggests a novel mechanism of dominant myotonia., Gaitán-Peñas H, Armand-Ugón M, Macaya A, Estévez R., Muscle Nerve. February 9, 2018;


Identification and Functional Characterization of CLCN1 Mutations Found in Nondystrophic Myotonia Patients., Vindas-Smith R, Fiore M, Vásquez M, Cuenca P, Del Valle G, Lagostena L, Gaitán-Peñas H, Estevez R, Pusch M, Morales F., Hum Mutat. January 1, 2016; 37 (1): 74-83.


Dominantly inherited myotonia congenita resulting from a mutation that increases open probability of the muscle chloride channel CLC-1., Richman DP, Yu Y, Lee TT, Tseng PY, Yu WP, Maselli RA, Tang CY, Chen TY., Neuromolecular Med. December 1, 2012; 14 (4): 328-37.


Intracellular β-nicotinamide adenine dinucleotide inhibits the skeletal muscle ClC-1 chloride channel., Bennetts B, Yu Y, Chen TY, Parker MW., J Biol Chem. July 27, 2012; 287 (31): 25808-20.


Binding of ATP to the CBS domains in the C-terminal region of CLC-1., Tseng PY, Yu WP, Liu HY, Zhang XD, Zou X, Chen TY., J Gen Physiol. April 1, 2011; 137 (4): 357-68.              


Functional study of CLC-1 mutants expressed in Xenopus oocytes reveals that a C-terminal region Thr891-Ser892-Thr893 is responsible for the effects of protein kinase C activator., Hsiao KM, Huang RY, Tang PH, Lin MJ., Cell Physiol Biochem. January 1, 2010; 25 (6): 687-94.


Non-genomic effects of sex hormones on CLC-1 may contribute to gender differences in myotonia congenita., Fialho D, Kullmann DM, Hanna MG, Schorge S., Neuromuscul Disord. November 1, 2008; 18 (11): 869-72.


ATP inhibition of CLC-1 is controlled by oxidation and reduction., Zhang XD, Tseng PY, Chen TY., J Gen Physiol. October 1, 2008; 132 (4): 421-8.            


Novel chloride channel mutations leading to mild myotonia among Chinese., Burgunder JM, Huifang S, Beguin P, Baur R, Eng CS, Seet RC, Lim EC, Ong BK, Hunziker W, Sigel E., Neuromuscul Disord. August 1, 2008; 18 (8): 633-40.


The muscle chloride channel ClC-1 is not directly regulated by intracellular ATP., Zifarelli G, Pusch M., J Gen Physiol. February 1, 2008; 131 (2): 109-16.          


Functional studies of the effect of NO donor on human CLCN1 polymorphism/mutants expressed in Xenopus laevis oocytes., Lin MJ, Huang RY, Pan H, Hsiao KM., Biochem Biophys Res Commun. January 25, 2008; 365 (4): 724-8.


Chloride channel myotonia: exon 8 hot-spot for dominant-negative interactions., Fialho D, Schorge S, Pucovska U, Davies NP, Labrum R, Haworth A, Stanley E, Sud R, Wakeling W, Davis MB, Kullmann DM, Hanna MG., Brain. December 1, 2007; 130 (Pt 12): 3265-74.


Cytoplasmic ATP inhibition of CLC-1 is enhanced by low pH., Tseng PY, Bennetts B, Chen TY., J Gen Physiol. August 1, 2007; 130 (2): 217-21.        


Myotonia-related mutations in the distal C-terminus of ClC-1 and ClC-0 chloride channels affect the structure of a poly-proline helix., Macías MJ, Teijido O, Zifarelli G, Martin P, Ramirez-Espain X, Zorzano A, Palacín M, Pusch M, Estévez R., Biochem J. April 1, 2007; 403 (1): 79-87.


Niflumic acid inhibits chloride conductance of rat skeletal muscle by directly inhibiting the CLC-1 channel and by increasing intracellular calcium., Liantonio A, Giannuzzi V, Picollo A, Babini E, Pusch M, Conte Camerino D., Br J Pharmacol. January 1, 2007; 150 (2): 235-47.


Functional characterization of CLCN1 mutations in Taiwanese patients with myotonia congenita via heterologous expression., Lin MJ, You TH, Pan H, Hsiao KM., Biochem Biophys Res Commun. December 29, 2006; 351 (4): 1043-7.


Functional complementation of truncated human skeletal-muscle chloride channel (hClC-1) using carboxyl tail fragments., Wu W, Rychkov GY, Hughes BP, Bretag AH., Biochem J. April 1, 2006; 395 (1): 89-97.


Truncated ClC-1 mRNA in myotonic dystrophy exerts a dominant-negative effect on the Cl current., Berg J, Jiang H, Thornton CA, Cannon SC., Neurology. December 28, 2004; 63 (12): 2371-5.


Characterization of three myotonia-associated mutations of the CLCN1 chloride channel gene via heterologous expression., Simpson BJ, Height TA, Rychkov GY, Nowak KJ, Laing NG, Hughes BP, Bretag AH., Hum Mutat. August 1, 2004; 24 (2): 185.


Functional and structural conservation of CBS domains from CLC chloride channels., Estévez R, Pusch M, Ferrer-Costa C, Orozco M, Jentsch TJ., J Physiol. June 1, 2004; 557 (Pt 2): 363-78.


Exon 17 skipping in CLCN1 leads to recessive myotonia congenita., Chen L, Schaerer M, Lu ZH, Lang D, Joncourt F, Weis J, Fritschi J, Kappeler L, Gallati S, Sigel E, Burgunder JM., Muscle Nerve. May 1, 2004; 29 (5): 670-6.


Characterization of two new dominant ClC-1 channel mutations associated with myotonia., Grunnet M, Jespersen T, Colding-Jørgensen E, Schwartz M, Klaerke DA, Vissing J, Olesen SP, Dunø M., Muscle Nerve. December 1, 2003; 28 (6): 722-32.


Structural requisites of 2-(p-chlorophenoxy)propionic acid analogues for activity on native rat skeletal muscle chloride conductance and on heterologously expressed CLC-1., Liantonio A, De Luca A, Pierno S, Didonna MP, Loiodice F, Fracchiolla G, Tortorella P, Antonio L, Bonerba E, Traverso S, Elia L, Picollo A, Pusch M, Camerino DC., Br J Pharmacol. August 1, 2003; 139 (7): 1255-64.


Conservation of chloride channel structure revealed by an inhibitor binding site in ClC-1., Estévez R, Schroeder BC, Accardi A, Jentsch TJ, Pusch M., Neuron. April 10, 2003; 38 (1): 47-59.


Molecular requisites for drug binding to muscle CLC-1 and renal CLC-K channel revealed by the use of phenoxy-alkyl derivatives of 2-(p-chlorophenoxy)propionic acid., Liantonio A, Accardi A, Carbonara G, Fracchiolla G, Loiodice F, Tortorella P, Traverso S, Guida P, Pierno S, De Luca A, Camerino DC, Pusch M., Mol Pharmacol. August 1, 2002; 62 (2): 265-71.


[Effect of extracellular chloride concentration on deactivation kinetics of rat ClC-1 chloride channel], Zhang XD, Zang YM, Zhou SS, Zang WJ, Yu XJ, Wang YM., Sheng Li Xue Bao. June 25, 2002; 54 (3): 196-200.


Drastic reduction of the slow gate of human muscle chloride channel (ClC-1) by mutation C277S., Accardi A, Ferrera L, Pusch M., J Physiol. August 1, 2001; 534 (Pt 3): 745-52.


Mechanism of block of single protopores of the Torpedo chloride channel ClC-0 by 2-(p-chlorophenoxy)butyric acid (CPB)., Pusch M, Accardi A, Liantonio A, Ferrera L, De Luca A, Camerino DC, Conti F., J Gen Physiol. July 1, 2001; 118 (1): 45-62.                                      


Anion permeation in Ca(2+)-activated Cl(-) channels., Qu Z, Hartzell HC., J Gen Physiol. December 1, 2000; 116 (6): 825-44.                          


Cysteine modification of a putative pore residue in ClC-0: implication for the pore stoichiometry of ClC chloride channels., Lin CW, Chen TY., J Gen Physiol. October 1, 2000; 116 (4): 535-46.                  


Fast and slow gating relaxations in the muscle chloride channel CLC-1., Accardi A, Pusch M., J Gen Physiol. September 1, 2000; 116 (3): 433-44.                  


Pharmacological characterization of chloride channels belonging to the ClC family by the use of chiral clofibric acid derivatives., Pusch M, Liantonio A, Bertorello L, Accardi A, De Luca A, Pierno S, Tortorella V, Camerino DC., Mol Pharmacol. September 1, 2000; 58 (3): 498-507.


The muscle chloride channel ClC-1 has a double-barreled appearance that is differentially affected in dominant and recessive myotonia., Saviane C, Conti F, Pusch M., J Gen Physiol. March 1, 1999; 113 (3): 457-68.          


Chloride dependence of hyperpolarization-activated chloride channel gates., Pusch M, Jordt SE, Stein V, Jentsch TJ., J Physiol. March 1, 1999; 515 ( Pt 2) 341-53.


ClC-1 chloride channel mutations in myotonia congenita: variable penetrance of mutations shifting the voltage dependence., Kubisch C, Schmidt-Rose T, Fontaine B, Bretag AH, Jentsch TJ., Hum Mol Genet. October 1, 1998; 7 (11): 1753-60.


Permeation and block of the skeletal muscle chloride channel, ClC-1, by foreign anions., Rychkov GY, Pusch M, Roberts ML, Jentsch TJ, Bretag AH., J Gen Physiol. May 1, 1998; 111 (5): 653-65.                  


Reconstitution of functional voltage-gated chloride channels from complementary fragments of CLC-1., Schmidt-Rose T, Jentsch TJ., J Biol Chem. August 15, 1997; 272 (33): 20515-21.


Concentration and pH dependence of skeletal muscle chloride channel ClC-1., Rychkov GY, Pusch M, Astill DS, Roberts ML, Jentsch TJ, Bretag AH., J Physiol. December 1, 1996; 497 ( Pt 2) 423-35.


Spectrum of mutations in the major human skeletal muscle chloride channel gene (CLCN1) leading to myotonia., Meyer-Kleine C, Steinmeyer K, Ricker K, Jentsch TJ, Koch MC., Am J Hum Genet. December 1, 1995; 57 (6): 1325-34.


Genomic organization of the human muscle chloride channel CIC-1 and analysis of novel mutations leading to Becker-type myotonia., Lorenz C, Meyer-Kleine C, Steinmeyer K, Koch MC, Jentsch TJ., Hum Mol Genet. June 1, 1994; 3 (6): 941-6.


Low single channel conductance of the major skeletal muscle chloride channel, ClC-1., Pusch M, Steinmeyer K, Jentsch TJ., Biophys J. January 1, 1994; 66 (1): 149-52.

???pagination.result.page??? 1