Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Summary Expression Phenotypes Gene Literature (29) GO Terms (3) Nucleotides (567) Proteins (49) Interactants (425) Wiki

Papers associated with ccna1

Limit to papers also referencing gene:
2 paper(s) referencing morpholinos

Results 1 - 29 of 29 results

Page(s): 1

Sort Newest To Oldest Sort Oldest To Newest

Fosl1 is vital to heart regeneration upon apex resection in adult Xenopus tropicalis., Wu HY, Zhou YM, Liao ZQ, Zhong JW, Liu YB, Zhao H, Liang CQ, Huang RJ, Park KS, Feng SS, Zheng L, Cai DQ, Qi XF., NPJ Regen Med. June 29, 2021; 6 (1): 36.                    

Claspin - checkpoint adaptor and DNA replication factor., Smits VAJ, Cabrera E, Freire R, Gillespie DA., FEBS J. February 1, 2019; 286 (3): 441-455.

Expression variation and covariation impair analog and enable binary signaling control., Kovary KM, Taylor B, Zhao ML, Teruel MN., Mol Syst Biol. May 14, 2018; 14 (5): e7997.                            

RNA helicase Mov10 is essential for gastrulation and central nervous system development., Skariah G, Perry KJ, Drnevich J, Henry JJ, Ceman S., Dev Dyn. April 1, 2018; 247 (4): 660-671.              

Foxn4 promotes gene expression required for the formation of multiple motile cilia., Campbell EP, Quigley IK, Kintner C., Development. December 15, 2016; 143 (24): 4654-4664.                                  

Genome evolution in the allotetraploid frog Xenopus laevis., Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, Fukui A, Hikosaka A, Suzuki A, Suzuki A, Kondo M, van Heeringen SJ, Quigley I, Heinz S, Ogino H, Ochi H, Hellsten U, Lyons JB, Simakov O, Putnam N, Stites J, Kuroki Y, Tanaka T, Michiue T, Watanabe M, Bogdanovic O, Lister R, Georgiou G, Paranjpe SS, van Kruijsbergen I, Shu S, Carlson J, Kinoshita T, Ohta Y, Mawaribuchi S, Jenkins J, Grimwood J, Schmutz J, Mitros T, Mozaffari SV, Suzuki Y, Haramoto Y, Yamamoto TS, Takagi C, Heald R, Miller K, Haudenschild C, Kitzman J, Nakayama T, Izutsu Y, Robert J, Robert J, Fortriede J, Burns K, Lotay V, Karimi K, Yasuoka Y, Dichmann DS, Flajnik MF, Houston DW, Shendure J, DuPasquier L, Vize PD, Zorn AM, Ito M, Marcotte EM, Wallingford JB, Ito Y, Asashima M, Ueno N, Matsuda Y, Veenstra GJ, Fujiyama A, Harland RM, Taira M, Rokhsar DS., Nature. October 20, 2016; 538 (7625): 336-343.                              

Xenopus laevis as a Model to Identify Translation Impairment., de Broucker A, Semaille P, Cailliau K, Martoriati A, Comptdaer T, Bodart JF, Destée A, Chartier-Harlin MC., J Vis Exp. September 27, 2015; (103):

The mechanism of DNA replication termination in vertebrates., Dewar JM, Budzowska M, Walter JC., Nature. September 17, 2015; 525 (7569): 345-50.                            

Chronic sublethal exposure to silver nanoparticles disrupts thyroid hormone signaling during Xenopus laevis metamorphosis., Carew AC, Hoque ME, Metcalfe CD, Peyrot C, Wilkinson KJ, Helbing CC., Aquat Toxicol. February 1, 2015; 159 99-108.

aPKC phosphorylates p27Xic1, providing a mechanistic link between apicobasal polarity and cell-cycle control., Sabherwal N, Thuret R, Lea R, Stanley P, Papalopulu N., Dev Cell. December 8, 2014; 31 (5): 559-71.                          

New insights into the maternal to zygotic transition., Langley AR, Smith JC, Stemple DL, Harvey SA., Development. October 1, 2014; 141 (20): 3834-41.

MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP., Truesdell SS, Mortensen RD, Seo M, Schroeder JC, Lee JH, LeTonqueze O, Vasudevan S., Sci Rep. January 1, 2012; 2 842.                

Analyses of zebrafish and Xenopus oocyte maturation reveal conserved and diverged features of translational regulation of maternal cyclin B1 mRNA., Zhang Y, Sheets MD., BMC Dev Biol. January 28, 2009; 9 7.          

Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development., Hayes JM, Kim SK, Abitua PB, Park TJ, Herrington ER, Kitayama A, Grow MW, Ueno N, Wallingford JB., Dev Biol. December 1, 2007; 312 (1): 115-30.                                          

ElrA binding to the 3''UTR of cyclin E1 mRNA requires polyadenylation elements., Slevin MK, Gourronc F, Hartley RS., Nucleic Acids Res. January 1, 2007; 35 (7): 2167-76.              

Cyclin A1/Cdk2 is sufficient but not required for the induction of apoptosis in early Xenopus laevis embryos., Carter AD, Wroble BN, Sible JC., Cell Cycle. October 1, 2006; 5 (19): 2230-6.

Zygotic control of maternal cyclin A1 translation and mRNA stability., Audic Y, Garbrecht M, Fritz B, Sheets MD, Hartley RS., Dev Dyn. December 1, 2002; 225 (4): 511-21.

Zygotic regulation of maternal cyclin A1 and B2 mRNAs., Audic Y, Anderson C, Bhatty R, Hartley RS., Mol Cell Biol. March 1, 2001; 21 (5): 1662-71.

Interaction of Xenopus Cdc2 x cyclin A1 with the origin recognition complex., Romanowski P, Marr J, Madine MA, Rowles A, Blow JJ, Gautier J, Laskey RA., J Biol Chem. February 11, 2000; 275 (6): 4239-43.

Identification of XDRP1; a Xenopus protein related to yeast Dsk2p binds to the N-terminus of cyclin A and inhibits its degradation., Funakoshi M, Geley S, Hunt T, Nishimoto T, Kobayashi H., EMBO J. September 15, 1999; 18 (18): 5009-18.

An altered nuclear migration into the daughter bud is induced by the cyclin A1-mediated Cdc28 kinase through an aberrant spindle movement in Saccharomyces cerevisiae., Sikder H, Funakoshi M, Nishimoto T, Kobayashi H., Cell Struct Funct. August 1, 1997; 22 (4): 465-76.

Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity before but not after the midblastula transition in Xenopus., Anderson JA, Lewellyn AL, Maller JL., Mol Biol Cell. July 1, 1997; 8 (7): 1195-206.                  

Xenopus cyclin A1 can associate with Cdc28 in budding yeast, causing cell-cycle arrest with an abnormal distribution of nuclear DNA., Funakoshi M, Sikder H, Ebihara H, Irie K, Sugimoto K, Matsumoto K, Hunt T, Nishimoto T, Kobayashi H., Genes Cells. May 1, 1997; 2 (5): 329-43.

Characterization of a second human cyclin A that is highly expressed in testis and in several leukemic cell lines., Yang R, Morosetti R, Koeffler HP., Cancer Res. March 1, 1997; 57 (5): 913-20.

Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates., King RW, Glotzer M, Kirschner MW., Mol Biol Cell. September 1, 1996; 7 (9): 1343-57.

In vivo regulation of the early embryonic cell cycle in Xenopus., Hartley RS, Rempel RE, Maller JL., Dev Biol. February 1, 1996; 173 (2): 408-19.

A distinct cyclin A is expressed in germ cells in the mouse., Sweeney C, Murphy M, Kubelka M, Ravnik SE, Hawkins CF, Wolgemuth DJ, Carrington M., Development. January 1, 1996; 122 (1): 53-64.

Caenorhabditis elegans cyclin A- and B-type genes: a cyclin A multigene family, an ancestral cyclin B3 and differential germline expression., Kreutzer MA, Richards JP, De Silva-Udawatta MN, Temenak JJ, Knoblich JA, Lehner CF, Bennett KL., J Cell Sci. June 1, 1995; 108 ( Pt 6) 2415-24.

Unmasking the role of the 3'' UTR in the cytoplasmic polyadenylation and translational regulation of maternal mRNAs., Wormington M., Bioessays. August 1, 1994; 16 (8): 533-5.

Page(s): 1